We explored in this chapter one of the major innovation in text analysis, word embeddings or word vectors. Word vectors are unique in being not only a way for us to represent our documents and our words but to also offer a new way of looking at our words. The success of Word2Vec led to an explosion in various word embedding methods, each with its own quirks, advantages, and disadvantages. We not only learned about the popular Word2Vec and Doc2Vec implementations but also five other word embedding methods – all of them are supported well in the Gensim eco-system making them easy to use.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia