Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Geospatial Development - Second Edition

You're reading from   Python Geospatial Development - Second Edition If you're experienced in Python here's an opportunity to get deep into Geospatial development, linking data to global locations. No prior knowledge required – this book takes you through it all, step by step.

Arrow left icon
Product type Paperback
Published in May 2013
Publisher Packt
ISBN-13 9781782161523
Length 508 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Erik Westra Erik Westra
Author Profile Icon Erik Westra
Erik Westra
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Python Geospatial Development
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Geospatial Development Using Python 2. GIS FREE CHAPTER 3. Python Libraries for Geospatial Development 4. Sources of Geospatial Data 5. Working with Geospatial Data in Python 6. GIS in the Database 7. Working with Spatial Data 8. Using Python and Mapnik to Generate Maps 9. Putting It All Together – a Complete Mapping System 10. ShapeEditor – Implementing List View, Import, and Export 11. ShapeEditor – Selecting and Editing Features Index

Spatially-enabled databases


In a sense, almost any database can be used to store geospatial data: simply convert a geometry to WKT format and store the results in a text column. But while this would allow you to store geospatial data in a database, it wouldn't let you query it in any useful way. All you could do is retrieve the raw WKT text and convert it back to a geometry object, one record at a time.

A spatially-enabled database, on the other hand, is aware of the notion of space, and allows you to work with spatial objects and concepts directly. In particular, a spatially-enabled database allows you to do the following:

  • Store spatial datatypes (points, lines, polygons, and so on) directly in the database, in the form of a geometry column.

  • Perform spatial queries on your data. For example:

    select all landmarks within 10 km of the city named "San Francisco"
  • Perform spatial joins on your data. For example:

    select all cities and their associated countries by joining cities and countries on (city...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image