Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analysis with Python

You're reading from   Big Data Analysis with Python Combine Spark and Python to unlock the powers of parallel computing and machine learning

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789955286
Length 276 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Ivan Marin Ivan Marin
Author Profile Icon Ivan Marin
Ivan Marin
Sarang VK Sarang VK
Author Profile Icon Sarang VK
Sarang VK
Ankit Shukla Ankit Shukla
Author Profile Icon Ankit Shukla
Ankit Shukla
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Big Data Analysis with Python
Preface
1. The Python Data Science Stack FREE CHAPTER 2. Statistical Visualizations 3. Working with Big Data Frameworks 4. Diving Deeper with Spark 5. Handling Missing Values and Correlation Analysis 6. Exploratory Data Analysis 7. Reproducibility in Big Data Analysis 8. Creating a Full Analysis Report Appendix

Visualization with Pandas


Pandas can be thought as a data Swiss Army knife, and one thing that a data scientist always needs when analyzing data is to visualize that data. We will go into detail on the kinds of plot that we can apply in an analysis. For now, the idea is to show how to do quick and dirty plots directly from pandas.

The plot function can be called directly from the DataFrame selection, allowing fast visualizations. A scatter plot can be created by using Matplotlib and passing data from the DataFrame to the plotting function. Now that we know the tools, let's focus on the pandas interface for data manipulation. This interface is so powerful that it is replicated by other projects that we will see in this course, such as Spark. We will explain the plot components and methods in more detail in the next chapter.

You will see how to create graphs that are useful for statistical analysis in the next chapter. Focus here on the mechanics of creating plots from pandas for quick visualizations.

Activity 3: Plotting Data with Pandas

To finish up our activity, let's redo all the previous steps and plot graphs with the results, as we would do in a preliminary analysis:

  1. Use the RadNet DataFrame that we have been working with.

  2. Fix all the data type problems, as we saw before.

  3. Create a plot with a filter per Location, selecting the city of San Bernardino, and one radionuclide, with the x-axis as date and the y-axis as radionuclide I-131:

    Figure 1.17: Plot of Location with I-131

  4. Create a scatter plot with the concentration of two related radionuclides, I-131 and I-132:

    Figure 1.18: Plot of I-131 and I-132

    Note

    The solution for this activity can be found on page 203.

We are getting a bit ahead of ourselves here with the plotting, so we don't need to worry about the details of the plot or how we attribute titles, labels, and so on. The important takeaway here is understanding that we can plot directly from the DataFrame for quick analysis and visualization.

You have been reading a chapter from
Big Data Analysis with Python
Published in: Apr 2019
Publisher: Packt
ISBN-13: 9781789955286
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image