Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Machine Learning Systems with Python

You're reading from   Building Machine Learning Systems with Python Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need.

Arrow left icon
Product type Paperback
Published in Jul 2013
Publisher Packt
ISBN-13 9781782161400
Length 290 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (20) Chapters Close

Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with Python Machine Learning FREE CHAPTER 2. Learning How to Classify with Real-world Examples 3. Clustering – Finding Related Posts 4. Topic Modeling 5. Classification – Detecting Poor Answers 6. Classification II – Sentiment Analysis 7. Regression – Recommendations 8. Regression – Recommendations Improved 9. Classification III – Music Genre Classification 10. Computer Vision – Pattern Recognition 11. Dimensionality Reduction 12. Big(ger) Data Where to Learn More about Machine Learning Index

The Iris dataset


The Iris dataset is a classic dataset from the 1930s; it is one of the first modern examples of statistical classification.

The setting is that of Iris flowers, of which there are multiple species that can be identified by their morphology. Today, the species would be defined by their genomic signatures, but in the 1930s, DNA had not even been identified as the carrier of genetic information.

The following four attributes of each plant were measured:

  • Sepal length

  • Sepal width

  • Petal length

  • Petal width

In general, we will call any measurement from our data as features.

Additionally, for each plant, the species was recorded. The question now is: if we saw a new flower out in the field, could we make a good prediction about its species from its measurements?

This is the supervised learning or classification problem; given labeled examples, we can design a rule that will eventually be applied to other examples. This is the same setting that is used for spam classification; given the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image