Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV 4 with Python Blueprints

You're reading from   OpenCV 4 with Python Blueprints Build creative computer vision projects with the latest version of OpenCV 4 and Python 3

Arrow left icon
Product type Paperback
Published in Mar 2020
Publisher Packt
ISBN-13 9781789801811
Length 366 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Michael Beyeler (USD) Michael Beyeler (USD)
Author Profile Icon Michael Beyeler (USD)
Michael Beyeler (USD)
Dr. Menua Gevorgyan Dr. Menua Gevorgyan
Author Profile Icon Dr. Menua Gevorgyan
Dr. Menua Gevorgyan
Michael Beyeler Michael Beyeler
Author Profile Icon Michael Beyeler
Michael Beyeler
Arsen Mamikonyan Arsen Mamikonyan
Author Profile Icon Arsen Mamikonyan
Arsen Mamikonyan
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Fun with Filters 2. Hand Gesture Recognition Using a Kinect Depth Sensor FREE CHAPTER 3. Finding Objects via Feature Matching and Perspective Transforms 4. 3D Scene Reconstruction Using Structure from Motion 5. Using Computational Photography with OpenCV 6. Tracking Visually Salient Objects 7. Learning to Recognize Traffic Signs 8. Learning to Recognize Facial Emotions 9. Learning to Classify and Localize Objects 10. Learning to Detect and Track Objects 11. Profiling and Accelerating Your Apps 12. Setting Up a Docker Container 13. Other Books You May Enjoy

Summary

This chapter showed a relatively simple—and yet surprisingly robust—way of recognizing a variety of hand gestures by counting the number of extended fingers.

The algorithm first shows how a task-relevant region of the image can be segmented using depth information acquired from a Microsoft Kinect 3D sensor, and how morphological operations can be used to clean up the segmentation result. By analyzing the shape of the segmented hand region, the algorithm comes up with a way to classify hand gestures based on the types of convexity effects found in the image.

Once again, mastering our use of OpenCV to perform the desired task did not require us to produce a large amount of code. Instead, we were challenged to gain an important insight that made us use the built-in functionality of OpenCV in an effective way.

Gesture recognition is a popular but challenging field in computer science, with applications in a large number of areas, such as Human-Computer Interaction (HCI), video surveillance, and even the video game industry. You can now use your advanced understanding of segmentation and structure analysis to build your own state-of-the-art gesture recognition system. Another approach you might want to use for hand gesture recognition is to train a deep image classification network on hand gestures. We will discuss deep networks for image classifications in Chapter 9, Learning to Classify and Localize Objects.

In the next chapter, we will continue to focus on detecting objects of interest in visual scenes, but we will assume a much more complicated case: viewing the object from an arbitrary perspective and distance. To do this, we will combine perspective transformations with scale-invariant feature descriptors to develop a robust feature-matching algorithm.

You have been reading a chapter from
OpenCV 4 with Python Blueprints - Second Edition
Published in: Mar 2020
Publisher: Packt
ISBN-13: 9781789801811
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image