Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning with R

You're reading from   Practical Machine Learning with R Define, build, and evaluate machine learning models for real-world applications

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781838550134
Length 416 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Brindha Priyadarshini Jeyaraman Brindha Priyadarshini Jeyaraman
Author Profile Icon Brindha Priyadarshini Jeyaraman
Brindha Priyadarshini Jeyaraman
Ludvig Renbo Olsen Ludvig Renbo Olsen
Author Profile Icon Ludvig Renbo Olsen
Ludvig Renbo Olsen
Monicah Wambugu Monicah Wambugu
Author Profile Icon Monicah Wambugu
Monicah Wambugu
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

About the Book 1. An Introduction to Machine Learning FREE CHAPTER 2. Data Cleaning and Pre-processing 3. Feature Engineering 4. Introduction to neuralnet and Evaluation Methods 5. Linear and Logistic Regression Models 6. Unsupervised Learning 1. Appendix

Chapter 4: Introduction to neuralnet and Evaluation Methods

Activity 15: Training a Neural Network

Solution:

  1. Attach the packages:

    # Attach the packages

    library(caret)

    library(groupdata2)

    library(neuralnet)

    library(NeuralNetTools)

  2. Set the seed value for reproducibility and easier comparison:

    # Set seed for reproducibility and easier comparison

    set.seed(1)

  3. Load the GermanCredit dataset:

    # Load the German Credit dataset

    GermanCredit <- read.csv("GermanCredit.csv")

  4. Remove the Age column:

    # Remove the Age column

    GermanCredit$Age <- NULL

  5. Create balanced partitions such that all three partitions have the same ratio of each class:

    # Partition with same ratio of each class in all three partitions

    partitions <- partition(GermanCredit, p = c(0.6, 0.2),

                            cat_col = "Class")

    train_set <- partitions[[1]]

    dev_set <- partitions[[2]]

    valid_set <- partitions[[3]]

  6. Find the preprocessing parameters for scaling and centering from the training set:

    # Find scaling and centering parameters

    params <- preProcess(train_set[, 1:6], method=c("center", "scale"))

  7. Apply standardization to the first six predictors in all three partitions, using the preProcess parameters from the previous step:

    # Transform the training set

    train_set[, 1:6] <- predict(params, train_set[, 1:6])

    # Transform the development set

    dev_set[, 1:6] <- predict(params, dev_set[, 1:6])

    # Transform the validation set

    valid_set[, 1:6] <- predict(params, valid_set[, 1:6])

  8. Train the neural network classifier:

    # Train the neural network classifier

    nn <- neuralnet(Class == "Good" ~ InstallmentRatePercentage +

                    ResidenceDuration + NumberExistingCredits,

                    train_set, linear.output = FALSE)

  9. Plot the network with its weights:

    # Plot the network

    plotnet(nn, var_labs=FALSE)

    The output is as follows:

    Figure 4.18: Neural network architecture using three predictors
    Figure 4.18: Neural network architecture using three predictors
  10. Print the error:

    train_error <- nn$result.matrix[1]

    train_error

    The output is as follows:

    ## [1] 62.15447

    The random initialization of the neural network weights can lead to slightly different results from one training to another. To avoid this, we use the set.seed() function at the beginning of the script, which helps when comparing models. We could also train the same model architecture with five different seeds to get a better sense of its performance.

Activity 16: Training and Comparing Neural Network Architectures

Solution:

  1. Attach the packages:

    # Attach the packages

    library(groupdata2)

    library(caret)

    library(neuralnet)

    library(mlbench)

  2. Set the random seed to 1:

    # Set seed for reproducibility and easier comparison

    set.seed(1)

  3. Load the PimaIndiansDiabetes2 dataset:

    # Load the PimaIndiansDiabetes2 dataset

    PimaIndiansDiabetes2 <- read.csv("PimaIndiansDiabetes2.csv")

  4. Summarize the dataset.

    summary(PimaIndiansDiabetes2)

    The summary is as follows:

    ##     pregnant         glucose         pressure         triceps     

    ##  Min.   : 0.000   Min.   : 44.0   Min.   : 24.00   Min.   : 7.00  

    ##  1st Qu.: 1.000   1st Qu.: 99.0   1st Qu.: 64.00   1st Qu.:22.00  

    ##  Median : 3.000   Median :117.0   Median : 72.00   Median :29.00  

    ##  Mean   : 3.845   Mean   :121.7   Mean   : 72.41   Mean   :29.15  

    ##  3rd Qu.: 6.000   3rd Qu.:141.0   3rd Qu.: 80.00   3rd Qu.:36.00  

    ##  Max.   :17.000   Max.   :199.0   Max.   :122.00   Max.   :99.00  

    ##                   NA's   :5       NA's   :35       NA's   :227  

    ##  

    ##     insulin            mass          pedigree           age       

    ##  Min.   : 14.00   Min.   :18.20   Min.   :0.0780   Min.   :21.00  

    ##  1st Qu.: 76.25   1st Qu.:27.50   1st Qu.:0.2437   1st Qu.:24.00  

    ##  Median :125.00   Median :32.30   Median :0.3725   Median :29.00  

    ##  Mean   :155.55   Mean   :32.46   Mean   :0.4719   Mean   :33.24  

    ##  3rd Qu.:190.00   3rd Qu.:36.60   3rd Qu.:0.6262   3rd Qu.:41.00  

    ##  Max.   :846.00   Max.   :67.10   Max.   :2.4200   Max.   :81.00  

    ##  NA's   :374      NA's   :11               

    ##                       

    ##  diabetes

    ##  neg:500  

    ##  pos:268        

  5. Handle missing data (quick solution). Start by assigning the dataset to a new name:

    # Assign/copy dataset to a new name

    diabetes_data <- PimaIndiansDiabetes2

  6. Remove the triceps and insulin columns:

    # Remove the triceps and insulin columns

    diabetes_data$triceps <- NULL

    diabetes_data$insulin <- NULL

  7. Remove all rows containing missing data (NAs):

    # Remove all rows with NAs (missing data)

    diabetes_data <- na.omit(diabetes_data)

  8. Partition the dataset into a training set (60%), a development set (20%), and a validation set (20%). Use cat_col="diabetes" to balance the ratios of each class between the partitions:

    # Partition with same ratio of each class in all three partitions

    partitions <- partition(diabetes_data, p = c(0.6, 0.2),

                                cat_col = "diabetes")

    train_set <- partitions[[1]]

    dev_set <- partitions[[2]]

    valid_set <- partitions[[3]]

  9. Find the preProcess parameters for scaling and centering the first six features:

    # Find scaling and centering parameters

    params <- preProcess(train_set[, 1:6], method = c("center", "scale"))

  10. Apply the scaling and centering to each partition:

    # Transform the training set

    train_set[, 1:6] <- predict(params, train_set[, 1:6])

    # Transform the development set

    dev_set[, 1:6] <- predict(params, dev_set[, 1:6])

    # Transform the validation set

    valid_set[, 1:6] <- predict(params, valid_set[, 1:6])

  11. Train multiple neural network architectures. Adjust them by changing the number of nodes and/or layers. In the model formula, use diabetes == "pos":

    # Training multiple neural nets

    nn4 <- neuralnet(diabetes == "pos" ~ ., train_set,

                     linear.output = FALSE, hidden = c(3))

    nn5 <- neuralnet(diabetes == "pos" ~ ., train_set,

                     linear.output = FALSE, hidden = c(2,1))

    nn6 <- neuralnet(diabetes == "pos" ~ ., train_set,

                     linear.output = FALSE, hidden = c(3,2))

  12. Put the model objects into a list:

    # Put the model objects into a list

    models <- list("nn4"=nn4,"nn5"=nn5,"nn6"=nn6)

  13. Create one-hot encoding of the diabetes variable:

    # Evaluating each model on the dev_set

    # Create one-hot encoding of diabetes variable

    dev_true_labels <- ifelse(dev_set$diabetes == "pos", 1, 0)

  14. Create a for loop for evaluating the models. By running the evaluations in a for loop, we avoid repeating the code:

    # Evaluate one model at a time in a loop, to avoid repeating the code

    for (i in 1:length(models)){

      

      # Predict the classes in the development set

      dev_predicted_probabilities <- predict(models[[i]], dev_set)

      dev_predictions <- ifelse(dev_predicted_probabilities > 0.5, 1, 0)

      

      # Create confusion Matrix

      confusion_matrix <- confusionMatrix(as.factor(dev_predictions),

                                          as.factor(dev_true_labels),

                                          mode="prec_recall",

                                          positive = "1")

      

      # Print the results for this model

      # Note: paste0() concatenates the strings

      # to (name of model + " on the dev...")

      print( paste0( names(models)[[i]], " on the development set: "))

      print(confusion_matrix)

      

    }

    The output is as follows:

    ## [1] "nn4 on the development set: "

    ## Confusion Matrix and Statistics

    ##

    ##           Reference

    ## Prediction  0  1

    ##          0 79 19

    ##          1 16 30

    ##                                           

    ##                Accuracy : 0.7569          

    ##                  95% CI : (0.6785, 0.8245)

    ##     No Information Rate : 0.6597          

    ##     P-Value [Acc > NIR] : 0.007584        

    ##                                           

    ##                   Kappa : 0.4505          

    ##  Mcnemar's Test P-Value : 0.735317        

    ##                                           

    ##               Precision : 0.6522          

    ##                  Recall : 0.6122          

    ##                      F1 : 0.6316          

    ##              Prevalence : 0.3403          

    ##          Detection Rate : 0.2083          

    ##    Detection Prevalence : 0.3194          

    ##       Balanced Accuracy : 0.7219          

    ##                                           

    ##        'Positive' Class : 1               

    ##                                           

    ## [1] "nn5 on the development set: "

    ## Confusion Matrix and Statistics

    ##

    ##           Reference

    ## Prediction  0  1

    ##          0 77 16

    ##          1 18 33

    ##                                          

    ##                Accuracy : 0.7639         

    ##                  95% CI : (0.686, 0.8306)

    ##     No Information Rate : 0.6597         

    ##     P-Value [Acc > NIR] : 0.004457       

    ##                                          

    ##                   Kappa : 0.4793         

    ##  Mcnemar's Test P-Value : 0.863832       

    ##                                          

    ##               Precision : 0.6471         

    ##                  Recall : 0.6735         

    ##                      F1 : 0.6600         

    ##              Prevalence : 0.3403         

    ##          Detection Rate : 0.2292         

    ##    Detection Prevalence : 0.3542         

    ##       Balanced Accuracy : 0.7420         

    ##                                          

    ##        'Positive' Class : 1              

    ##                                          

    ## [1] "nn6 on the development set: "

    ## Confusion Matrix and Statistics

    ##

    ##           Reference

    ## Prediction  0  1

    ##          0 76 14

    ##          1 19 35

    ##                                           

    ##                Accuracy : 0.7708          

    ##                  95% CI : (0.6935, 0.8367)

    ##     No Information Rate : 0.6597          

    ##     P-Value [Acc > NIR] : 0.002528        

    ##                                           

    ##                   Kappa : 0.5019          

    ##  Mcnemar's Test P-Value : 0.486234        

    ##                                           

    ##               Precision : 0.6481          

    ##                  Recall : 0.7143          

    ##                      F1 : 0.6796          

    ##              Prevalence : 0.3403          

    ##          Detection Rate : 0.2431          

    ##    Detection Prevalence : 0.3750          

    ##       Balanced Accuracy : 0.7571          

    ##                                           

    ##        'Positive' Class : 1               

  15. As the nn6 model has the highest accuracy and F1 score, it is the best model.
  16. Evaluate the best model on the validation set. Start by creating the one-hot encoding of the diabetes variable in the validation set:

    # Create one-hot encoding of Class variable

    valid_true_labels <- ifelse(valid_set$diabetes == "pos", 1, 0)

  17. Use the best model to predict the diabetes variable in the validation set:

    # Predict the classes in the validation set

    predicted_probabilities <- predict(nn6, valid_set)

    predictions <- ifelse(predicted_probabilities > 0.5, 1, 0)

  18. Create a confusion matrix:

    # Create confusion Matrix

    confusion_matrix <- confusionMatrix(as.factor(predictions),

                                        as.factor(valid_true_labels),

                                        mode="prec_recall", positive = "1")

  19. Print the results:

    # Print the results for this model

    # Note that by separating two function calls by ";"

    # we can have multiple calls per line

    print("nn6 on the validation set:"); print(confusion_matrix)

    The output is as follows:

    ## [1] "nn6 on the validation set:"

    ## Confusion Matrix and Statistics

    ##

    ##           Reference

    ## Prediction  0  1

    ##          0 70 16

    ##          1 25 35

    ##                                           

    ##                Accuracy : 0.7192          

    ##                  95% CI : (0.6389, 0.7903)

    ##     No Information Rate : 0.6507          

    ##     P-Value [Acc > NIR] : 0.04779         

    ##                                           

    ##                   Kappa : 0.4065          

    ##  Mcnemar's Test P-Value : 0.21152         

    ##                                           

    ##               Precision : 0.5833          

    ##                  Recall : 0.6863          

    ##                      F1 : 0.6306          

    ##              Prevalence : 0.3493          

    ##          Detection Rate : 0.2397          

    ##    Detection Prevalence : 0.4110          

    ##       Balanced Accuracy : 0.7116          

    ##                                           

    ##        'Positive' Class : 1               

  20. Plot the best model:

    plotnet(nn6, var_labs=FALSE)

    The output will look as follows:

    Figure 4.19: The best neural network architecture without cross-validation.
Figure 4.19: The best neural network architecture without cross-validation.

In this activity, we have trained multiple neural network architectures and evaluated the best model on the validation set.

Activity 17: Training and Comparing Neural Network Architectures with Cross-Validation

Solution:

  1. Attach the packages.

    # Attach the packages

    library(groupdata2)

    library(caret)

    library(neuralnet)

    library(mlbench)

  2. Set the random seed to 1.

    # Set seed for reproducibility and easier comparison

    set.seed(1)

  3. Load the PimaIndiansDiabetes2 dataset.

    # Load the PimaIndiansDiabetes2 dataset

    data(PimaIndiansDiabetes2)

  4. Handle missing data (quick solution).

    Start by assigning the dataset to a new name.

    # Handling missing data (quick solution)

    # Assign/copy dataset to a new name

    diabetes_data <- PimaIndiansDiabetes2

  5. Remove the triceps and insulin columns.

    # Remove the triceps and insulin columns

    diabetes_data$triceps <- NULL

    diabetes_data$insulin <- NULL

  6. Remove all rows with NAs.

    # Remove all rows with Nas (missing data)

    diabetes_data <- na.omit(diabetes_data)

  7. Partition the dataset into a training set (80%) and validation set (20%). Use cat_col="diabetes" to balance the ratios of each class between the partitions.

    # Partition into a training set and a validation set

    partitions <- partition(diabetes_data, p = 0.8, cat_col = "diabetes")

    train_set <- partitions[[1]]

    valid_set <- partitions[[2]]

  8. Find the preProcess parameters for scaling and centering the first six features.

    # Find scaling and centering parameters

    # Note: We could also decide to do this inside the training loop!

    params <- preProcess(train_set[, 1:6], method=c("center", "scale"))

  9. Apply the scaling and centering to both partitions.

    # Transform the training set

    train_set[, 1:6] <- predict(params, train_set[, 1:6])

    # Transform the validation set

    valid_set[, 1:6] <- predict(params, valid_set[, 1:6])

  10. Create 4 folds in the training set, using the fold() function. Use cat_col="diabetes" to balance the ratios of each class between the folds.

    # Create folds for cross-validation

    # Balance on the Class variable

    train_set <- fold(train_set, k=4, cat_col = "diabetes")

    # Note: This creates a factor in the dataset called ".folds"

    # Take care not to use this as a predictor.

  11. Write the cross-validation training section. Start by initializing the vectors for collecting errors and accuracies.

    ## Cross-validation loop

    # Change the model formula in the loop and run the below

    # for each model architecture you're testing

    # Initialize vectors for collecting errors and accuracies

    errors <- c()

    accuracies <- c()

    Start the training for loop. We have 4 folds, so we need 4 iterations.

    # Training loop

    for (part in 1:4){

  12. Assign the chosen fold as test set and the rest of the folds as train set. Be aware of the indentation.

      # Assign the chosen fold as test set

      # and the rest of the folds as train set

      cv_test_set <- train_set[train_set$.folds == part,]

      cv_train_set <- train_set[train_set$.folds != part,]

  13. Train the neural network with your chosen predictors.

      # Train neural network classifier

      # Make sure not to include the .folds column as a predictor!

      nn <- neuralnet(diabetes == "pos" ~ .,

                      cv_train_set[, 1:7],

                      linear.output = FALSE,

                      hidden=c(2,2))

  14. Append the error to the errors vector.

      # Append error to errors vector

      errors <- append(errors, nn$result.matrix[1])

  15. Create one-hot encoding of the target variable in the CV test set.

      # Create one-hot encoding of Class variable

      true_labels <- ifelse(cv_test_set$diabetes == "pos", 1, 0)

  16. Use the trained neural network to predict the target variable in the CV test set.

      # Predict the class in the test set

      # It returns probabilities that the observations are "pos"

      predicted_probabilities <- predict(nn, cv_test_set)

      predictions <- ifelse(predicted_probabilities > 0.5, 1, 0)

  17. Calculate accuracy. We could also use confusionMatrix() here, if we wanted other metrics.

      # Calculate accuracy manually

      # Note: TRUE == 1, FALSE == 0

      cv_accuracy <- sum(true_labels == predictions) / length(true_labels)

  18. Append the calculated accuracy to the accuracies vector.

      # Append the accuracy to the accuracies vector

      accuracies <- append(accuracies, cv_accuracy)

  19. Close the for loop.

    }

  20. Calculate average_error and print it.

    # Calculate average error and accuracy

    # Note that we could also have gathered the predictions from all the

    # folds and calculated the accuracy only once. This could lead to slightly

    # different results, e.g. if the folds are not exactly the same size.

    average_error <- mean(errors)

    average_error

    The output is as follows:

    ## [1] 28.38503

  21. Calculate average_accuracy and print it. Note that we could also have gathered the predictions from all the folds and calculated the accuracy only once.

    average_accuracy <- mean(accuracies)

    average_accuracy

    The output is as follows:

    ## [1] 0.7529813

  22. Evaluate the best model architecture on the validation set. Start by training an instance of the model architecture on the entire training set.

    # Once you have chosen the best model, train it on the entire training set

    # and evaluate on the validation set

    # Note that we set the stepmax, to make sure

    # it has enough training steps to converge

    nn_best <- neuralnet(diabetes == "pos" ~ .,

                         train_set[, 1:7],

                         linear.output = FALSE,

                         hidden=c(2,2),

                         stepmax = 2e+05)

  23. Create an one-hot encoding of the diabetes variable in the validation set.

    # Find the true labels in the validation set

    valid_true_labels <- ifelse(valid_set$diabetes == "pos", 1, 0)

  24. Use the model to predict the diabetes variable in the validation set.

    # Predict the classes in the validation set

    predicted_probabilities <- predict(nn_best, valid_set)

    predictions <- ifelse(predicted_probabilities > 0.5, 1, 0)

  25. Create a confusion matrix.

    # Create confusion matrix

    confusion_matrix <- confusionMatrix(as.factor(predictions),

                                        as.factor(valid_true_labels),

                                        mode="prec_recall", positive = "1")

  26. Print the results.

    # Print the results for this model

    print("nn_best on the validation set:")

    ## [1] "nn_best on the validation set:"

    print(confusion_matrix)

    ## Confusion Matrix and Statistics

    ##

    ##           Reference

    ## Prediction  0  1

    ##          0 78 20

    ##          1 17 30

    ##                                           

    ##                Accuracy : 0.7448          

    ##                  95% CI : (0.6658, 0.8135)

    ##     No Information Rate : 0.6552          

    ##     P-Value [Acc > NIR] : 0.01302         

    ##                                           

    ##                   Kappa : 0.4271          

    ##  Mcnemar's Test P-Value : 0.74231         

    ##                                           

    ##               Precision : 0.6383          

    ##                  Recall : 0.6000          

    ##                      F1 : 0.6186          

    ##              Prevalence : 0.3448          

    ##          Detection Rate : 0.2069          

    ##    Detection Prevalence : 0.3241          

    ##       Balanced Accuracy : 0.7105          

    ##                                           

    ##        'Positive' Class : 1               

    ##

  27. Plot the neural network.

    plotnet(nn_best, var_labs=FALSE)

    The output will be as follows:

Figure 4.20: Best neural network architecture found with cross-validation.
Figure 4.20: Best neural network architecture found with cross-validation.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image