Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Cleaning Cookbook

You're reading from   Python Data Cleaning Cookbook Modern techniques and Python tools to detect and remove dirty data and extract key insights

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781800565661
Length 436 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Michael B Walker Michael B Walker
Author Profile Icon Michael B Walker
Michael B Walker
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Anticipating Data Cleaning Issues when Importing Tabular Data into pandas 2. Chapter 2: Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas FREE CHAPTER 3. Chapter 3: Taking the Measure of Your Data 4. Chapter 4: Identifying Missing Values and Outliers in Subsets of Data 5. Chapter 5: Using Visualizations for the Identification of Unexpected Values 6. Chapter 6: Cleaning and Exploring Data with Series Operations 7. Chapter 7: Fixing Messy Data when Aggregating 8. Chapter 8: Addressing Data Issues When Combining DataFrames 9. Chapter 9: Tidying and Reshaping Data 10. Chapter 10: User-Defined Functions and Classes to Automate Data Cleaning 11. Other Books You May Enjoy

Using linear regression to identify data points with significant influence

The remaining recipes in this chapter use statistical modeling to identify outliers. The advantage of these techniques is that they are less dependent on the distribution of the variable of concern, and take more into account than can be revealed in either univariate or bivariate analyses. This allows us to identify outliers that are not otherwise apparent. On the other hand, by taking more factors into account, multivariate techniques may provide evidence that a previously suspect value is actually within an expected range, and provides meaningful information.

In this recipe, we use linear regression to identify observations (rows) that have an outsized influence on models of a target or dependent variable. This can indicate that one or more values for a few observations are so extreme that they compromise model fit for all of the other observations.

Getting ready

The code in this recipe requires the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image