Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Amazon Redshift Cookbook

You're reading from   Amazon Redshift Cookbook Recipes for building modern data warehousing solutions

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800569683
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Shruti Worlikar Shruti Worlikar
Author Profile Icon Shruti Worlikar
Shruti Worlikar
Harshida Patel Harshida Patel
Author Profile Icon Harshida Patel
Harshida Patel
Thiyagarajan Arumugam Thiyagarajan Arumugam
Author Profile Icon Thiyagarajan Arumugam
Thiyagarajan Arumugam
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Getting Started with Amazon Redshift 2. Chapter 2: Data Management FREE CHAPTER 3. Chapter 3: Loading and Unloading Data 4. Chapter 4: Data Pipelines 5. Chapter 5: Scalable Data Orchestration for Automation 6. Chapter 6: Data Authorization and Security 7. Chapter 7: Performance Optimization 8. Chapter 8: Cost Optimization 9. Chapter 9: Lake House Architecture 10. Chapter 10: Extending Redshift's Capabilities 11. Other Books You May Enjoy Appendix

Managing a schema in a database

In Amazon Redshift, a schema is a namespace that groups database objects such as tables, views, stored procedures, and so on. Organizing database objects in a schema is good for security monitoring and also logically groups the objects within a cluster. In this recipe, we will create a sample schema that will be used to hold all the database objects.

Getting ready

To complete this recipe, you will need access to any SQL interface such as a SQL client or query editor.

How to do it…

  1. Users can create a schema using the CREATE SCHEMA command. The following steps will enable you to set up a schema with the name finance and add the necessary access to the groups.
  2. Create finance_grp, audit_grp, and finance_admin_user groups using the following command:
    create group finance_grp;
    create group audit_grp;
    create user finance_admin_usr with password '<PasswordOfYourChoice>'; 
  3. Create a schema named finance with a space quota of 2 terabytes (TB), with a finance_admin_usr schema owner:
    CREATE schema finance authorization finance_admin_usr QUOTA 2 TB;

    You can also modify an existing schema using ALTER SCHEMA or DROP SCHEMA.

  4. For the finance schema, grant access privileges of USAGE and ALL to the finance_grp group. Further, grant read access to the tables in the schema using a SELECT privilege for the audit_grp group:
    GRANT USAGE on SCHEMA finance TO GROUP finance_grp;
    GRANT USAGE on SCHEMA finance TO GROUP audit_grp;
    GRANT ALL ON schema finance to GROUP finance_grp;
    GRANT SELECT ON ALL TABLES IN SCHEMA finance TO GROUP audit_grp;
  5. You can verify that the schema and owner group have been created by using the following code:
    select nspname as schema, usename as owner
    from pg_namespace, pg_user
    where pg_namespace.nspowner = pg_user.usesysid
    and pg_namespace.nspname ='finance';
  6. Create a foo table (or view/database object) within the schema by prefixing the schema name along with the table name, as shown in the following command:
    CREATE TABLE finance.foo (bar int); 
  7. Now, in order to select the foo table from the finance schema, you will have to prefix the schema name along with the table name, as shown in the following command:
    select * from finance.foo; 

    The preceding SQL code will not return any rows.

  8. Assign a search path to conveniently reference the database objects directly, without requiring the complete namespace of the schema qualifier. The following command sets the search path as finance so that you don't need to qualify the schema name every time when working with database objects:
    set search_path to '$user', finance, public;

    Important note

    The search path allows a convenient way to access the database objects without having to specify the target schema in the namespace when authoring the SQL code. The search path can be configured using the search_path parameter with a comma-separated list of schema names. When referencing the database object in a SQL when no target schema is provided, the database object that is in the first available schema list is picked up. You can configure the search path by using the SET search_path command at the current session level or at the user level.

  9. Now, executing the following SELECT query without the schema qualifier automatically locates the foo table in the finance schema:
    select * from foo;

    The preceding SQL code will not return any rows.

Now, the new finance schema is ready for use and you can keep creating new database objects in this schema.

Important note

A database is automatically created by default with a PUBLIC schema. Identical database object names can be used in different schemas of the database. For example, finance.customer and marketing.customer are valid table definitions that can be created without any conflict, where finance and marketing are schema names and customer is the table name. Schemas serve the key purpose of easy management through this logical grouping—for example, you can grant SELECT access to all the objects at a schema level instead of individual tables.

You have been reading a chapter from
Amazon Redshift Cookbook
Published in: Jul 2021
Publisher: Packt
ISBN-13: 9781800569683
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image