Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Observability for Data Engineering

You're reading from   Data Observability for Data Engineering Proactive strategies for ensuring data accuracy and addressing broken data pipelines

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781804616024
Length 228 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Michele Pinto Michele Pinto
Author Profile Icon Michele Pinto
Michele Pinto
Sammy El Khammal Sammy El Khammal
Author Profile Icon Sammy El Khammal
Sammy El Khammal
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Introduction to Data Observability
2. Chapter 1: Fundamentals of Data Quality Monitoring FREE CHAPTER 3. Chapter 2: Fundamentals of Data Observability 4. Part 2: Implementing Data Observability
5. Chapter 3: Data Observability Techniques 6. Chapter 4: Data Observability Elements 7. Chapter 5: Defining Rules on Indicators 8. Part 3: How to adopt Data Observability in your organization
9. Chapter 6: Root Cause Analysis 10. Chapter 7: Optimizing Data Pipelines 11. Chapter 8: Organizing Data Teams and Measuring the Success of Data Observability 12. Part 4: Appendix
13. Chapter 9: Data Observability Checklist 14. Chapter 10: Pathway to Data Observability 15. Index 16. Other Books You May Enjoy

Computing observability metrics

The following data observability elements are known as data quality metrics. In this category, we will group everything we consider to be observability metrics. These observations are statistics related to the data you manipulate:

  • Distribution observations: Minimum, maximum, mean, standard deviation, skewness and kurtosis, quantiles, and so on
  • Categorical stats: Number of categories, percentage of each category, and so on
  • Completeness observations: Number of rows and number of missing values
  • Freshness information: Timestamp of the data itself
  • KPIs: Key performance indicators and other custom metrics worth checking, for technical or business purposes

The metrics you compute depend on the circumstances and need to be linked to the context where they were computed. Those metrics can change following the usage of the data, the filters you applied, and the application run. Figure 4.7 shows an example of multiple contexts for...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image