Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Financial Modeling Using Quantum Computing

You're reading from   Financial Modeling Using Quantum Computing Design and manage quantum machine learning solutions for financial analysis and decision making

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781804618424
Length 292 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (4):
Arrow left icon
Iraitz Montalban Iraitz Montalban
Author Profile Icon Iraitz Montalban
Iraitz Montalban
Anshul Saxena Anshul Saxena
Author Profile Icon Anshul Saxena
Anshul Saxena
Javier Mancilla Javier Mancilla
Author Profile Icon Javier Mancilla
Javier Mancilla
Christophe Pere Christophe Pere
Author Profile Icon Christophe Pere
Christophe Pere
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Basic Applications of Quantum Computing in Finance
2. Chapter 1: Quantum Computing Paradigm FREE CHAPTER 3. Chapter 2: Quantum Machine Learning Algorithms and Their Ecosystem 4. Chapter 3: Quantum Finance Landscape 5. Part 2: Advanced Applications of Quantum Computing in Finance
6. Chapter 4: Derivative Valuation 7. Chapter 5: Portfolio Management 8. Chapter 6: Credit Risk Analytics 9. Chapter 7: Implementation in Quantum Clouds 10. Part 3: Upcoming Quantum Scenario
11. Chapter 8: Simulators and HPC’s Role in the NISQ Era 12. Chapter 9: NISQ Quantum Hardware Roadmap 13. Chapter 10: Business Implementation 14. Index 15. Other Books You May Enjoy

Further reading

For those interested in diving deeper into some of the techniques mentioned in this chapter, here are some recommendations that should help you understand the basics.

One of the most interesting and challenging frameworks we have discussed is tensor networks. Many resources can be found in the literature. Still, two that we can recommend are the work by Biamonte and Bergholm from 2017, which provides a solid foundation to understand its potential better. For those more hands-on engineers, the Quimb (Gray, 2018) and Jet (Vincent et al., 2022) Python packages provide a fun way to learn and experiment.

Similarly, distributed computation has a path, and works by Zaharia et al. (2010) on Apache Spark and Moritz et al. (2018) on Ray are leading the path toward easy-to-implement distributed solutions.

Something particularly interesting is the contribution of the Baidu team to the existing PaddlePaddle framework (Ma et al., 2020). Not only have they provided an industrial...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image