Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering  with Python

You're reading from   Machine Learning Engineering with Python Manage the lifecycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781837631964
Length 462 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to ML Engineering 2. The Machine Learning Development Process FREE CHAPTER 3. From Model to Model Factory 4. Packaging Up 5. Deployment Patterns and Tools 6. Scaling Up 7. Deep Learning, Generative AI, and LLMOps 8. Building an Example ML Microservice 9. Building an Extract, Transform, Machine Learning Use Case 10. Other Books You May Enjoy
11. Index

Setting up an AWS account

As previously stated, you don't have to use AWS, but that's what we're going to use throughout this book. Once it's set up here, you can use it for everything we'll do:

  1. To set up an AWS account, navigate to aws.amazon.com and select Create Account. You will have to add some payment details but everything we mention in this book can be explored through the free tier of AWS, where you do not incur a cost below some set threshold of consumption.
  2. Once you have created your account, you can navigate to the AWS Management Console, where you can see all of the services that are available to you (see Figure 2.5):

    Figure 2.5 – The AWS Management Console
  3. Finally, there would be no ML engineering without ML models. So, the final piece of software you should install is one that will help you track and serve your models in a consistent way. For this, we will use MLflow, an open source platform from Databricks and under the stewardship of...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image