Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with scikit-learn

You're reading from   Mastering Machine Learning with scikit-learn Apply effective learning algorithms to real-world problems using scikit-learn

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher
ISBN-13 9781788299879
Length 254 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gavin Hackeling Gavin Hackeling
Author Profile Icon Gavin Hackeling
Gavin Hackeling
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The Fundamentals of Machine Learning FREE CHAPTER 2. Simple Linear Regression 3. Classification and Regression with k-Nearest Neighbors 4. Feature Extraction 5. From Simple Linear Regression to Multiple Linear Regression 6. From Linear Regression to Logistic Regression 7. Naive Bayes 8. Nonlinear Classification and Regression with Decision Trees 9. From Decision Trees to Random Forests and Other Ensemble Methods 10. The Perceptron 11. From the Perceptron to Support Vector Machines 12. From the Perceptron to Artificial Neural Networks 13. K-means 14. Dimensionality Reduction with Principal Component Analysis

Tuning models with grid search


Recall from Chapter 3, Classification and Regression with K-Nearest Neighbors that hyperparameters are parameters of the model that the learning algorithm does not estimate. For example, hyperparameters of our logistic regression SMS classifier include the value of the regularization term and thresholds used to remove words that appear too frequently or infrequently. In scikit-learn, hyperparameters are set through the constructors of estimators and transformers. In the previous examples, we did not set any arguments for LogisticRegression; we used the default values for all of the hyperparameters. These default values are often a good start, but they may not produce the optimal model. Grid search is a common method for selecting the hyperparameter values that produce the best model. Grid search takes a set of possible values for each hyperparameter that should be tuned, and evaluates a model trained on each element of the Cartesian product of the sets. That...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image