Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Data Mining

You're reading from   R Data Mining Implement data mining techniques through practical use cases and real-world datasets

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781787124462
Length 442 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Andrea Cirillo Andrea Cirillo
Author Profile Icon Andrea Cirillo
Andrea Cirillo
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Why to Choose R for Your Data Mining and Where to Start 2. A First Primer on Data Mining Analysing Your Bank Account Data FREE CHAPTER 3. The Data Mining Process - CRISP-DM Methodology 4. Keeping the House Clean – The Data Mining Architecture 5. How to Address a Data Mining Problem – Data Cleaning and Validation 6. Looking into Your Data Eyes – Exploratory Data Analysis 7. Our First Guess – a Linear Regression 8. A Gentle Introduction to Model Performance Evaluation 9. Don't Give up – Power up Your Regression Including Multiple Variables 10. A Different Outlook to Problems with Classification Models 11. The Final Clash – Random Forests and Ensemble Learning 12. Looking for the Culprit – Text Data Mining with R 13. Sharing Your Stories with Your Stakeholders through R Markdown 14. Epilogue
15. Dealing with Dates, Relative Paths and Functions

The Crisp-DM methodology data mining cycle 

The CRISP-DM methodology considers the analytical activities as a cyclical set of phases to be repeated until a satisfactory result is obtained. Not surprisingly then, Crisp-DM methodology phases are usually represented as a circle going from business understanding to the final deployment:

As we can see within the diagram, the cycle is composed of six phases:

  • Business understanding
  • Data understanding 
  • Data preparation
  • Modeling
  • Evaluation
  • Deployment

This is the greater abstraction level of the Crisp-DM methodology, meaning one that can apply, with no exception, to all data mining problems. Three more specific layers are then conceived as a conjunction between the general model and the specific data mining project:

  • Generic tasks
  • Specialized tasks
  • Process instances

All of the components of every level are mapped to one...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image