Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Machine Learning By Example

You're reading from   R Machine Learning By Example Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher
ISBN-13 9781784390846
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Getting Started with R and Machine Learning FREE CHAPTER 2. Let's Help Machines Learn 3. Predicting Customer Shopping Trends with Market Basket Analysis 4. Building a Product Recommendation System 5. Credit Risk Detection and Prediction – Descriptive Analytics 6. Credit Risk Detection and Prediction – Predictive Analytics 7. Social Media Analysis – Analyzing Twitter Data 8. Sentiment Analysis of Twitter Data Index

Important concepts in predictive modeling


We already looked at several concepts when we talked about the machine learning pipeline. In this section, we will look at typical terms which are used in predictive modeling, and also discuss about model building and evaluation concepts in detail.

Preparing the data

The data preparation step, as discussed earlier, involves preparing the datasets necessary for feature selection and building the predictive models using the data. We frequently use the following terms in this context:

  • Datasets: They are typically a collection of data points or observations. Most datasets usually correspond to some form of structured data which involves a two dimensional data structure, such as a data matrix or data table (in R this is usually represented using a data frame) containing various values. An example is our german_credit_dataset.csv file from Chapter 5, Credit Risk Detection and Prediction – Descriptive Analytics.

  • Data observations: They are the rows in a dataset...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image