Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Data Science Workshop

You're reading from   The Data Science Workshop Learn how you can build machine learning models and create your own real-world data science projects

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800566927
Length 824 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
Robert Thas John Robert Thas John
Author Profile Icon Robert Thas John
Robert Thas John
Thomas Joseph Thomas Joseph
Author Profile Icon Thomas Joseph
Thomas Joseph
Anthony So Anthony So
Author Profile Icon Anthony So
Anthony So
Dr. Samuel Asare Dr. Samuel Asare
Author Profile Icon Dr. Samuel Asare
Dr. Samuel Asare
Andrew Worsley Andrew Worsley
Author Profile Icon Andrew Worsley
Andrew Worsley
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface
1. Introduction to Data Science in Python 2. Regression FREE CHAPTER 3. Binary Classification 4. Multiclass Classification with RandomForest 5. Performing Your First Cluster Analysis 6. How to Assess Performance 7. The Generalization of Machine Learning Models 8. Hyperparameter Tuning 9. Interpreting a Machine Learning Model 10. Analyzing a Dataset 11. Data Preparation 12. Feature Engineering 13. Imbalanced Datasets 14. Dimensionality Reduction 15. Ensemble Learning

Summary

This chapter introduced the topic of linear regression analysis using Python. We learned that regression analysis, in general, is a supervised machine learning or data science problem. We learned about the fundamentals of linear regression analysis, including the ideas behind the method of least squares. We also learned about how to use the pandas Python module to load and prepare data for exploration and analysis.

We explored how to create scatter graphs of bivariate data and how to fit a line of best fit through them. Along the way, we discovered the power of the statsmodels module in Python. We explored how to use it to define simple linear regression models and to solve the model for the relevant parameters. We also learned how to extend that to situations where the number of independent variables is more than one – multiple linear regressions. We investigated approaches by which we can transform a non-linear relation between a dependent and independent variable so that a non-linear problem can be handled using linear regression, introduced because of the transformation. We took a closer look at the statsmodels formula language. We learned how to use it to define a variety of linear models and to solve for their respective model parameters.

We continued to learn about the ideas underpinning model goodness of fit. We discussed the R-squared statistic as a measure of the goodness of fit for regression models. We followed our discussions with the basic concepts of statistical significance. We learned about how to validate a regression model globally using the F-statistic, which Python calculates for us. We also examined how to check for the statistical significance of individual model coefficients using t-tests and their associated p-values. We reviewed the assumptions of linear regression analysis and how they impact on the validity of any regression analysis work.

We will now move on from regression analysis, and Chapter 3, Binary Classification, and Chapter 4, Multiclass Classification with RandomForest, will discuss binary and multi-label classification, respectively. These chapters will introduce the techniques needed to handle supervised data science problems where the dependent variable is of the categorical data type.

Regression analysis will be revisited when the important topics of model performance improvement and interpretation are given a closer look later in the book. In Chapter 8, Hyperparameter Tuning, we will see how to use k-nearest neighbors and as another method for carrying out regression analysis. We will also be introduced to ridge regression, a linear regression method that is useful for situations where there are a large number of parameters.

You have been reading a chapter from
The Data Science Workshop - Second Edition
Published in: Aug 2020
Publisher: Packt
ISBN-13: 9781800566927
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image