Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Machine Learning Engineering

You're reading from   Azure Machine Learning Engineering Deploy, fine-tune, and optimize ML models using Microsoft Azure

Arrow left icon
Product type Paperback
Published in Jan 2023
Publisher Packt
ISBN-13 9781803239309
Length 362 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (4):
Arrow left icon
Balamurugan Balakreshnan Balamurugan Balakreshnan
Author Profile Icon Balamurugan Balakreshnan
Balamurugan Balakreshnan
Dennis Michael Sawyers Dennis Michael Sawyers
Author Profile Icon Dennis Michael Sawyers
Dennis Michael Sawyers
Sina Fakhraee Ph.D Sina Fakhraee Ph.D
Author Profile Icon Sina Fakhraee Ph.D
Sina Fakhraee Ph.D
Megan Masanz Megan Masanz
Author Profile Icon Megan Masanz
Megan Masanz
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Training and Tuning Models with the Azure Machine Learning Service
2. Chapter 1: Introducing the Azure Machine Learning Service FREE CHAPTER 3. Chapter 2: Working with Data in AMLS 4. Chapter 3: Training Machine Learning Models in AMLS 5. Chapter 4: Tuning Your Models with AMLS 6. Chapter 5: Azure Automated Machine Learning 7. Part 2: Deploying and Explaining Models in AMLS
8. Chapter 6: Deploying ML Models for Real-Time Inferencing 9. Chapter 7: Deploying ML Models for Batch Scoring 10. Chapter 8: Responsible AI 11. Chapter 9: Productionizing Your Workload with MLOps 12. Part 3: Productionizing Your Workload with MLOps
13. Chapter 10: Using Deep Learning in Azure Machine Learning 14. Chapter 11: Using Distributed Training in AMLS 15. Index 16. Other Books You May Enjoy

Deploying a model for real-time inferencing with managed online endpoints through the Azure CLI v2

In this section, we will leverage a managed online endpoint and deploy it with the Azure Machine Learning CLI v2. The CLI v2 will leverage YAML files holding the configuration required for our deployment in the commands we call. Remember the requirement for a unique managed online endpoint name, so when running the code, be sure to update your managed online endpoint name in both the YAML files and the CLI command.

To use the new Azure CLI v2 extension, we are required to have an Azure CLI version greater than 2.15.0. This can easily be checked by using the az version command to check your Azure CLI version:

  1. On your compute instance, navigate to the terminal and type the following command: az version. After typing that command, you should see that the Azure CLI v2 is installed on your compute instance, as shown in the following figure.
Figure 6.30 – The Azure CLI v2 with the ml extension installed

Figure...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image