Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Genomics

You're reading from   Deep Learning for Genomics Data-driven approaches for genomics applications in life sciences and biotechnology

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804615447
Length 270 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Upendra Kumar Devisetty Upendra Kumar Devisetty
Author Profile Icon Upendra Kumar Devisetty
Upendra Kumar Devisetty
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1 – Machine Learning in Genomics
2. Chapter 1: Introducing Machine Learning for Genomics FREE CHAPTER 3. Chapter 2: Genomics Data Analysis 4. Chapter 3: Machine Learning Methods for Genomic Applications 5. Part 2 – Deep Learning for Genomic Applications
6. Chapter 4: Deep Learning for Genomics 7. Chapter 5: Introducing Convolutional Neural Networks for Genomics 8. Chapter 6: Recurrent Neural Networks in Genomics 9. Chapter 7: Unsupervised Deep Learning with Autoencoders 10. Chapter 8: GANs for Improving Models in Genomics 11. Part 3 – Operationalizing models
12. Chapter 9: Building and Tuning Deep Learning Models 13. Chapter 10: Model Interpretability in Genomics 14. Chapter 11: Model Deployment and Monitoring 15. Chapter 12: Challenges, Pitfalls, and Best Practices for Deep Learning in Genomics 16. Index 17. Other Books You May Enjoy

ML for genomics

Thanks to rapid advancements in NGS, genomics has shown tremendous growth in the last decade, which has led to an outpouring of massive sequence data. In addition to whole-genome sequencing (WGS), other promising techniques have emerged, such as whole-exome sequencing (WES) to measure the expressed region of the genome, whole-transcriptome sequencing (WTS) or RNA-sequencing (RNA-seq) to measure mRNA expression, ChIP-sequencing (ChIP-seq) to identify transcription-factor binding sites, and Ribo-sequencing (Ribo-seq) to identify actively translating mRNAs for quantifying relative protein abundance, and so on. The challenge now is not “what to measure ” but “how to analyze the data to extract meaningful data and turn those insights into applications”. While the development of NGS technologies and the generation of massive data has provided opportunities for a new field called “bioinformatics” to grow significantly, it has also...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image