Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering PyTorch

You're reading from   Mastering PyTorch Create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781801074308
Length 558 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Overview of Deep Learning Using PyTorch 2. Deep CNN Architectures FREE CHAPTER 3. Combining CNNs and LSTMs 4. Deep Recurrent Model Architectures 5. Advanced Hybrid Models 6. Graph Neural Networks 7. Music and Text Generation with PyTorch 8. Neural Style Transfer 9. Deep Convolutional GANs 10. Image Generation Using Diffusion 11. Deep Reinforcement Learning 12. Model Training Optimizations 13. Operationalizing PyTorch Models into Production 14. PyTorch on Mobile Devices 15. Rapid Prototyping with PyTorch 16. PyTorch and AutoML 17. PyTorch and Explainable AI 18. Recommendation Systems with PyTorch 19. PyTorch and Hugging Face 20. Index

Understanding deep Q-learning

Instead of creating a Q-values table, DQN uses a deep neural network (DNN) that outputs a Q-value for a given state-action pair. DQN is used with complex environments such as video games, where there are far too many states for them to be managed in a Q-values table. The current image frame of the video game is used to represent the current state and is fed as input to the underlying DNN model, together with the current action.

The DNN outputs a scalar Q-value for each such input. In practice, instead of just passing the current image frame, N number of neighboring image frames in a given time window are passed as input to the model.

We are using a DNN to solve an RL problem. This has an inherent concern. While working with DNNs, we have always worked with independent and identically distributed (iid) data samples. However, in RL, every current output impacts the next input. For example, in the case of Q-learning, the Bellman equation itself suggests...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image