Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning NumPy Array

You're reading from   Learning NumPy Array Supercharge your scientific Python computations by understanding how to use the NumPy library effectively

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783983902
Length 164 pages
Edition Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Learning NumPy Array
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with NumPy FREE CHAPTER 2. NumPy Basics 3. Basic Data Analysis with NumPy 4. Simple Predictive Analytics with NumPy 5. Signal Processing Techniques 6. Profiling, Debugging, and Testing 7. The Scientific Python Ecosystem Index

Broadcasting arrays


In a nutshell, NumPy tries to perform an operation even though the operands do not have the same shape. In this section, we will multiply an array and a scalar. The scalar is extended to the shape of an array operand, and then the multiplication is performed. We will download an audio file and make a new version that is quieter:

  1. First, read the WAV file. We will use standard Python code to download an audio file of Austin Powers saying "Smashing, baby". SciPy has a wavfile module that allows you to load sound data or generate WAV files. If SciPy is installed, then we should already have this module. The read() function returns a data array and sample rate. In this example, we only care about the data.

    sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
  2. Plot the original WAV data with Matplotlib. Give the subplot the title, Original, as shown in the following lines of code:

    plt.subplot(2, 1, 1)
    plt.title("Original")
    plt.plot(data)
  3. Now create a new array. We will use NumPy to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image