In this chapter, we introduced decision trees as a particular kind of classifier. The basic idea behind their concept is that a decision process can become sequential by using splitting nodes, where, according to the sample, a branch is chosen until we reach a final leaf. In order to build such a tree, the concept of impurity was introduced; starting from a complete dataset, our goal is to find a split point that creates two distinct sets that should share the minimum number of features and, at the end of the process, should be associated with a single target class. The complexity of a tree depends on the intrinsic purity—in other words, when it's always easy to determine a feature that best separates a set, the depth will be lower. However, in many cases, this is almost impossible, so the resulting tree needs many intermediate nodes to reduce the impurity...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia