Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Reinforcement Learning with Python

You're reading from   Mastering Reinforcement Learning with Python Build next-generation, self-learning models using reinforcement learning techniques and best practices

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781838644147
Length 544 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Enes Bilgin Enes Bilgin
Author Profile Icon Enes Bilgin
Enes Bilgin
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Reinforcement Learning Foundations
2. Chapter 1: Introduction to Reinforcement Learning FREE CHAPTER 3. Chapter 2: Multi-Armed Bandits 4. Chapter 3: Contextual Bandits 5. Chapter 4: Makings of a Markov Decision Process 6. Chapter 5: Solving the Reinforcement Learning Problem 7. Section 2: Deep Reinforcement Learning
8. Chapter 6: Deep Q-Learning at Scale 9. Chapter 7: Policy-Based Methods 10. Chapter 8: Model-Based Methods 11. Chapter 9: Multi-Agent Reinforcement Learning 12. Section 3: Advanced Topics in RL
13. Chapter 10: Introducing Machine Teaching 14. Chapter 11: Achieving Generalization and Overcoming Partial Observability 15. Chapter 12: Meta-Reinforcement Learning 16. Chapter 13: Exploring Advanced Topics 17. Section 4: Applications of RL
18. Chapter 14: Solving Robot Learning 19. Chapter 15: Supply Chain Management 20. Chapter 16: Personalization, Marketing, and Finance 21. Chapter 17: Smart City and Cybersecurity 22. Chapter 18: Challenges and Future Directions in Reinforcement Learning 23. Other Books You May Enjoy

Implementing scalable deep Q-learning algorithms using Ray

In this section, we will implement a parallelized DQN variate using the Ray library. Ray is a powerful, general-purpose, yet simple framework for building and running distributed applications on a single machine as well as on large clusters. Ray has been built for applications that have heterogenous computational needs in mind. This is exactly what modern DRL algorithms require as they involve a mix of long and short running tasks, usage of GPU and CPU resources, and more. In fact, Ray itself has a powerful RL library that is called RLlib. Both Ray and RLlib have been increasingly adopted in academia and industry.

Info

For a comparison of Ray to other distributed backend frameworks such as Spark and Dask, see https://bit.ly/2T44AzK. You will see that Ray is a very competitive alternative, even beating Python's own multiprocessing implementation in some benchmarks.

Writing a production-grade distributed application...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image