Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Apache Spark Machine Learning Blueprints
Apache Spark Machine Learning Blueprints

Apache Spark Machine Learning Blueprints: Develop a range of cutting-edge machine learning projects with Apache Spark using this actionable guide

eBook
€17.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Apache Spark Machine Learning Blueprints

Chapter 2. Data Preparation for Spark ML

Machine learning professionals and data scientists often spend 70% or 80% of their time preparing data for their machine learning projects. Data preparation can be very hard work, but it is necessary and extremely important as it affects everything to follow. Therefore, in this chapter, we will cover all the necessary data preparation parts for our machine learning, which often runs from data accessing, data cleaning, datasets joining, and then to feature development so as to get our datasets ready to develop ML models on Spark. Specifically, we will discuss the following six data preparation tasks mentioned before and then end our chapter with a discussion of repeatability and automation:

  • Accessing and loading datasets
    • Publicly available datasets for ML
    • Loading datasets into Spark easily
    • Exploring and visualizing data with Spark
  • Data cleaning
    • Dealing with missing cases and incompleteness
    • Data cleaning on Spark
    • Data cleaning made easy
  • Identity matching...

Accessing and loading datasets

In this section, we will review some publicly available datasets and cover methods of loading some of these datasets into Spark. Then, we will review several methods of exploring and visualizing these datasets on Spark.

After this section, we will be able to find some datasets to use, load them into Spark, and then start to explore and visualize this data.

Accessing publicly available datasets

As there is an open source movement to make software free, there is also a very active open data movement that made a lot of datasets freely accessible to every researcher and analyst. At a worldwide scale, most governments make their collected datasets open to the public. For example, on http://www.data.gov/, there are more than 140,000 datasets available to be used freely, which are spread over agriculture, finance, and education.

Besides open data coming from various governmental organizations, many research institutions also collect a lot of very useful datasets and...

Data cleaning

In this section, we will review some methods for data cleaning on Spark with a focus on data incompleteness. Then, we will discuss some of Spark's special features for data cleaning and also some data cleaning solutions made easy with Spark.

After this section, we will be able to clean data and make datasets ready for machine learning.

Dealing with data incompleteness

For machine learning, the more the data the better. However, as is often the case, the more the data, the dirtier it could be—that is, the more the work to clean the data.

There are many issues to deal with data quality control, which can be as simple as data entry errors or data duplications. In principal, the methods of treating them are similar—for example, utilizing data logic for discovery and subject matter knowledge and analytical logic to correct them. For this reason, in this section, we will focus on missing value treatment so as to illustrate our usage of Spark for this topic. Data cleaning...

Identity matching

In this section, we will cover one important data preparation topic, which is about identity matching and related solutions. We will discuss some of Spark's special features for solving identity issues and also some data matching solutions made easy with Spark.

After this section, we will be capable of taking care of some common data identity problems with Apache Spark.

Identity issues

For data preparation, we often need to deal with some data elements that belong to the same person or units, but which do not look similar to them. For example, we may have purchased some data for customer Larry Z. and web activity data for L. Zhang. Is Larry Z a same person as L. Zhang? Are there many identity variations in the data?

Matching entities is a big challenge for machine learning data preparation as these types of entity variation are very common and could be caused by many different reasons, such as duplications, errors, name variants, and intentional aliasing. Sometimes, it...

Dataset reorganizing

In this section, we will cover dataset reorganization techniques. Then, we will discuss some of Spark's special features for data reorganizing and also some of R's special methods for data reorganizing that can be used with the Spark notebook.

After this section, we will be able to reorganize datasets for various machine learning needs.

Dataset reorganizing tasks

Reorganizing datasets sounds easy but could be very challenging and also often very time consuming.

Two common data reorganizing tasks are—firstly, to obtain a subset of the data for modeling and, secondly, to aggregate data to a higher level. For example, we have students' data, but we need to have a dataset at the classroom level. For this, we will need to calculate some attributes for students and then reorganize it into new data.

To work with data reorganizing, data scientists and machine learning professionals often utilize their familiar SQL or R programming tools. Fortunately within...

Dataset joining

In this section, we will cover dataset joining techniques. We will also discuss some of Spark's special features for data joining plus some data joining solutions made easy with Spark.

After this section, we will be able to join data for various machine learning needs.

Dataset joining and its tool – the Spark SQL

In preparing datasets for a machine learning project, we often need to combine data from multiple datasets. For relational tables, the task is to join tables through a primary and foreign key relationship.

Joining two or more datasets together sounds easy, but can be very challenging and time consuming. In SQL, SELECT is the most frequently used command. As an example, the following is a typical SQL code to perform a join:

SELECT column1, column2, …
FROM table1, table2
WHERE table1.joincolumn = table2.joincolumn
AND search_condition(s);

To work with the table joining tasks mentioned before, data scientists and machine learning professionals often utilize...

Accessing and loading datasets


In this section, we will review some publicly available datasets and cover methods of loading some of these datasets into Spark. Then, we will review several methods of exploring and visualizing these datasets on Spark.

After this section, we will be able to find some datasets to use, load them into Spark, and then start to explore and visualize this data.

Accessing publicly available datasets

As there is an open source movement to make software free, there is also a very active open data movement that made a lot of datasets freely accessible to every researcher and analyst. At a worldwide scale, most governments make their collected datasets open to the public. For example, on http://www.data.gov/, there are more than 140,000 datasets available to be used freely, which are spread over agriculture, finance, and education.

Besides open data coming from various governmental organizations, many research institutions also collect a lot of very useful datasets and make...

Data cleaning


In this section, we will review some methods for data cleaning on Spark with a focus on data incompleteness. Then, we will discuss some of Spark's special features for data cleaning and also some data cleaning solutions made easy with Spark.

After this section, we will be able to clean data and make datasets ready for machine learning.

Dealing with data incompleteness

For machine learning, the more the data the better. However, as is often the case, the more the data, the dirtier it could be—that is, the more the work to clean the data.

There are many issues to deal with data quality control, which can be as simple as data entry errors or data duplications. In principal, the methods of treating them are similar—for example, utilizing data logic for discovery and subject matter knowledge and analytical logic to correct them. For this reason, in this section, we will focus on missing value treatment so as to illustrate our usage of Spark for this topic. Data cleaning covers data...

Identity matching


In this section, we will cover one important data preparation topic, which is about identity matching and related solutions. We will discuss some of Spark's special features for solving identity issues and also some data matching solutions made easy with Spark.

After this section, we will be capable of taking care of some common data identity problems with Apache Spark.

Identity issues

For data preparation, we often need to deal with some data elements that belong to the same person or units, but which do not look similar to them. For example, we may have purchased some data for customer Larry Z. and web activity data for L. Zhang. Is Larry Z a same person as L. Zhang? Are there many identity variations in the data?

Matching entities is a big challenge for machine learning data preparation as these types of entity variation are very common and could be caused by many different reasons, such as duplications, errors, name variants, and intentional aliasing. Sometimes, it could...

Left arrow icon Right arrow icon

Key benefits

  • Customize Apache Spark and R to fit your analytical needs in customer research, fraud detection, risk analytics, and recommendation engine development
  • Develop a set of practical Machine Learning applications that can be implemented in real-life projects
  • A comprehensive, project-based guide to improve and refine your predictive models for practical implementation

Description

There's a reason why Apache Spark has become one of the most popular tools in Machine Learning – its ability to handle huge datasets at an impressive speed means you can be much more responsive to the data at your disposal. This book shows you Spark at its very best, demonstrating how to connect it with R and unlock maximum value not only from the tool but also from your data. Packed with a range of project "blueprints" that demonstrate some of the most interesting challenges that Spark can help you tackle, you'll find out how to use Spark notebooks and access, clean, and join different datasets before putting your knowledge into practice with some real-world projects, in which you will see how Spark Machine Learning can help you with everything from fraud detection to analyzing customer attrition. You'll also find out how to build a recommendation engine using Spark's parallel computing powers.

Who is this book for?

If you are a data scientist, a data analyst, or an R and SPSS user with a good understanding of machine learning concepts, algorithms, and techniques, then this is the book for you. Some basic understanding of Spark and its core elements and application is required.

What you will learn

  • Set up Apache Spark for machine learning and discover its impressive processing power
  • Combine Spark and R to unlock detailed business insights essential for decision making
  • Build machine learning systems with Spark that can detect fraud and analyze financial risks
  • Build predictive models focusing on customer scoring and service ranking
  • Build a recommendation systems using SPSS on Apache
  • Spark
  • Tackle parallel computing and find out how it can support your machine learning projects
  • Turn open data and communication data into actionable insights by making use of various forms of machine learning

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : May 30, 2016
Length: 252 pages
Edition : 1st
Language : English
ISBN-13 : 9781785887789
Vendor :
Apache
Category :
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : May 30, 2016
Length: 252 pages
Edition : 1st
Language : English
ISBN-13 : 9781785887789
Vendor :
Apache
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 102.97
Real-Time Big Data Analytics
€36.99
Apache Spark Machine Learning Blueprints
€32.99
Fast Data Processing with Spark 2
€32.99
Total 102.97 Stars icon
Banner background image

Table of Contents

12 Chapters
1. Spark for Machine Learning Chevron down icon Chevron up icon
2. Data Preparation for Spark ML Chevron down icon Chevron up icon
3. A Holistic View on Spark Chevron down icon Chevron up icon
4. Fraud Detection on Spark Chevron down icon Chevron up icon
5. Risk Scoring on Spark Chevron down icon Chevron up icon
6. Churn Prediction on Spark Chevron down icon Chevron up icon
7. Recommendations on Spark Chevron down icon Chevron up icon
8. Learning Analytics on Spark Chevron down icon Chevron up icon
9. City Analytics on Spark Chevron down icon Chevron up icon
10. Learning Telco Data on Spark Chevron down icon Chevron up icon
11. Modeling Open Data on Spark Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
(1 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 0%
1 star 100%
Sven Feb 17, 2017
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Vous trouverez beaucoup mieux directement sur la documentation de Spark ou sur google. Ce livre n'apporte aucune plus value, ni dans la forme, ni dans la structure, ni dans le contenu, ni dans les use cases, ni dans son originalité,...
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.