Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Cracking the Data Science Interview

You're reading from   Cracking the Data Science Interview Unlock insider tips from industry experts to master the data science field

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781805120506
Length 404 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Leondra R. Gonzalez Leondra R. Gonzalez
Author Profile Icon Leondra R. Gonzalez
Leondra R. Gonzalez
Aaren Stubberfield Aaren Stubberfield
Author Profile Icon Aaren Stubberfield
Aaren Stubberfield
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Breaking into the Data Science Field FREE CHAPTER
2. Chapter 1: Exploring Today’s Modern Data Science Landscape 3. Chapter 2: Finding a Job in Data Science 4. Part 2: Manipulating and Managing Data
5. Chapter 3: Programming with Python 6. Chapter 4: Visualizing Data and Data Storytelling 7. Chapter 5: Querying Databases with SQL 8. Chapter 6: Scripting with Shell and Bash Commands in Linux 9. Chapter 7: Using Git for Version Control 10. Part 3: Exploring Artificial Intelligence
11. Chapter 8: Mining Data with Probability and Statistics 12. Chapter 9: Understanding Feature Engineering and Preparing Data for Modeling 13. Chapter 10: Mastering Machine Learning Concepts 14. Chapter 11: Building Networks with Deep Learning 15. Chapter 12: Implementing Machine Learning Solutions with MLOps 16. Part 4: Getting the Job
17. Chapter 13: Mastering the Interview Rounds 18. Chapter 14: Negotiating Compensation 19. Index 20. Other Books You May Enjoy

Summary

In this comprehensive chapter, we covered essential concepts in pre-modeling data for analytics and feature engineering. Mastering these techniques is vital for data scientists to effectively handle real-world datasets and build accurate machine learning models.

Understanding techniques such as data min-max scaling, z-score scaling, and feature engineering can enhance model performance; transformations such as logarithmic, Box-Cox, and exponential help reshape data for better algorithm compatibility; dimensionality reduction methods such as PCA and t-SNE simplify and visualize data and aid in effective model building; and handling imbalanced data with resampling and ensemble techniques ensure balanced datasets and unbiased predictions.

Additionally, we covered feature engineering techniques, including one-hot encoding, label encoding, and target encoding. These techniques allow us to craft new and informative representations of data. Feature engineering involves selecting...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image