Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science Projects with Python

You're reading from   Data Science Projects with Python A case study approach to gaining valuable insights from real data with machine learning

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800564480
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Stephen Klosterman Stephen Klosterman
Author Profile Icon Stephen Klosterman
Stephen Klosterman
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface
1. Data Exploration and Cleaning 2. Introduction to Scikit-Learn and Model Evaluation FREE CHAPTER 3. Details of Logistic Regression and Feature Exploration 4. The Bias-Variance Trade-Off 5. Decision Trees and Random Forests 6. Gradient Boosting, XGBoost, and SHAP Values 7. Test Set Analysis, Financial Insights, and Delivery to the Client Appendix

Decision Trees

Decision trees and the machine learning models that are based on them, in particular, random forests and gradient boosted trees, are fundamentally different types of models than Generalized Linear Models (GLMs), such as logistic regression. GLMs are rooted in the theories of classical statistics, which have a long history. The mathematics behind linear regression was originally developed at the beginning of the 19th century, by Legendre and Gauss. Because of this, the normal distribution is also known as the Gaussian distribution.

In contrast, while the idea of using a tree process to make decisions is relatively simple, the popularity of decision trees as mathematical models has come about more recently. The mathematical procedures that we currently use for formulating decision trees in the context of predictive modeling were published in the 1980s. The reason for this more recent development is that the methods used to grow decision trees rely on computational power...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image