Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Theano

You're reading from   Deep Learning with Theano Perform large-scale numerical and scientific computations efficiently

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786465825
Length 300 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Christopher Bourez Christopher Bourez
Author Profile Icon Christopher Bourez
Christopher Bourez
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Theano Basics FREE CHAPTER 2. Classifying Handwritten Digits with a Feedforward Network 3. Encoding Word into Vector 4. Generating Text with a Recurrent Neural Net 5. Analyzing Sentiment with a Bidirectional LSTM 6. Locating with Spatial Transformer Networks 7. Classifying Images with Residual Networks 8. Translating and Explaining with Encoding – decoding Networks 9. Selecting Relevant Inputs or Memories with the Mechanism of Attention 10. Predicting Times Sequences with Advanced RNN 11. Learning from the Environment with Reinforcement 12. Learning Features with Unsupervised Generative Networks 13. Extending Deep Learning with Theano Index

Graphs and symbolic computing

Let's take back the simple addition example and present different ways to display the same information:

>>> x = T.matrix('x')

>>> y = T.matrix('y')

>>> z = x + y

>>> z

Elemwise{add,no_inplace}.0

>>> theano.pp(z)

'(x + y)

>>> theano.printing.pprint(z)

'(x + y)'

>>> theano.printing.debugprint(z)
Elemwise{add,no_inplace} [id A] ''   
 |x [id B]
 |y [id C]

Here, the debugprint function prints the pre-compilation graph, the unoptimized graph. In this case, it is composed of two variable nodes, x and y, and an apply node, the elementwise addition, with the no_inplace option. The inplace option will be used in the optimized graph to save memory and re-use the memory of the input to store the result of the operation.

If the graphviz and pydot libraries have been installed, the pydotprint command outputs a PNG image of the graph:

>>> theano.printing.pydotprint(z)
The output file is available at ~/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-16.04-xenial-x86_64-2.7.12-64/theano.pydotprint.gpu.png.
Graphs and symbolic computing

You might have noticed that the z.eval command takes while to execute the first time. The reason for this delay is the time required to optimize the mathematical expression and compile the code for the CPU or GPU before being evaluated.

The compiled expression can be obtained explicitly and used as a function that behaves as a traditional Python function:

>>> addition = theano.function([x, y], [z])

>>> addition([[1, 2], [1, 3]], [[1, 0], [3, 4]])
[array([[ 2.,  2.],
       [ 4.,  7.]], dtype=float32)]

The first argument in the function creation is a list of variables representing the input nodes of the graph. The second argument is the array of output variables. To print the post compilation graph, use this command:

>>> theano.printing.debugprint(addition)
HostFromGpu(gpuarray) [id A] ''   3
 |GpuElemwise{Add}[(0, 0)]<gpuarray> [id B] ''   2
   |GpuFromHost<None> [id C] ''   1
   | |x [id D]
   |GpuFromHost<None> [id E] ''   0
     |y [id F]

>>> theano.printing.pydotprint(addition)

The output file is available at ~/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-16.04-xenial-x86_64-2.7.12-64/theano.pydotprint.gpu.png:
Graphs and symbolic computing

This case has been printed while using the GPU. During compilation, each operation has chosen the available GPU implementation. The main program still runs on CPU, where the data resides, but a GpuFromHost instruction performs a data transfer from the CPU to the GPU for input, while the opposite operation, HostFromGpu, fetches the result for the main program to display it:

Graphs and symbolic computing

Theano performs some mathematical optimizations, such as grouping elementwise operations, adding a new value to the previous addition:

>>> z= z * x

>>> theano.printing.debugprint(theano.function([x,y],z))
HostFromGpu(gpuarray) [id A] ''   3
 |GpuElemwise{Composite{((i0 + i1) * i0)}}[(0, 0)]<gpuarray> [id B] ''   2
   |GpuFromHost<None> [id C] ''   1
   | |x [id D]
   |GpuFromHost<None> [id E] ''   0
     |y [id F]

The number of nodes in the graph has not increased: two additions have been merged into one node. Such optimizations make it more tricky to debug, so we'll show you at the end of this chapter how to disable optimizations for debugging.

Lastly, let's see a bit more about setting the initial value with NumPy:

>>> theano.config.floatX
'float32'

>>> x = T.matrix()

>>> x
<TensorType(float32, matrix)>

>>> y = T.matrix()

>>> addition = theano.function([x, y], [x+y])

>>> addition(numpy.ones((2,2)),numpy.zeros((2,2)))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python2.7/site-packages/theano/compile/function_module.py", line 786, in __call__
    allow_downcast=s.allow_downcast)

  File "/usr/local/lib/python2.7/site-packages/theano/tensor/type.py", line 139, in filter
    raise TypeError(err_msg, data)
TypeError: ('Bad input argument to theano function with name "<stdin>:1"  at index 0(0-based)', 'TensorType(float32, matrix) cannot store a value of dtype float64 without risking loss of precision. If you do not mind this loss, you can: 1) explicitly cast your data to float32, or 2) set "allow_input_downcast=True" when calling "function".', array([[ 1.,  1.],
       [ 1.,  1.]]))

Executing the function on the NumPy arrays throws an error related to loss of precision, since the NumPy arrays here have float64 and int64 dtypes, but x and y are float32. There are multiple solutions to this; the first is to create the NumPy arrays with the right dtype:

>>> import numpy

>>> addition(numpy.ones((2,2), dtype=theano.config.floatX),numpy.zeros((2,2), dtype=theano.config.floatX))
[array([[ 1.,  1.],
        [ 1.,  1.]], dtype=float32)]

Alternatively, cast the NumPy arrays (in particular for numpy.diag, which does not allow us to choose the dtype directly):

>>> addition(numpy.ones((2,2)).astype(theano.config.floatX),numpy.diag((2,3)).astype(theano.config.floatX))
[array([[ 3.,  1.],
        [ 1.,  4.]], dtype=float32)]

Or we could allow downcasting:

>>> addition = theano.function([x, y], [x+y],allow_input_downcast=True)

>>> addition(numpy.ones((2,2)),numpy.zeros((2,2)))
[array([[ 1.,  1.],
        [ 1.,  1.]], dtype=float32)]
You have been reading a chapter from
Deep Learning with Theano
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781786465825
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image