In this chapter, we had a look at some of the recent advancements in the field of NLP, encompassing Seq2Seq modeling, the attention mechanism, the Transformer model, and BERT, all of which have revolutionized the way NLP problems are approached today. We began with a discussion on Seq2Seq modeling where we looked at its core components, the encoder and decoder. Based on the knowledge garnered, we built a French-to-English translator using the encoder-decoder stack. After that, we had a detailed discussion on the attention mechanism, which has allowed great parallelization leading to fast NLP training, and has also improved upon the results from the existing architectures. Next, we looked at Transformers and discussed every component inside the encoder-decoder stack of the Transformers. We also saw how the attention mechanism can be used as the core building block of such architectures, and can possibly provide a replacement for the existing RNN-based architectures. Finally, we...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia