Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Julia Programming Projects

You're reading from   Julia Programming Projects Learn Julia 1.x by building apps for data analysis, visualization, machine learning, and the web

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781788292740
Length 500 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Adrian Salceanu Adrian Salceanu
Author Profile Icon Adrian Salceanu
Adrian Salceanu
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Julia Programming FREE CHAPTER 2. Creating Our First Julia App 3. Setting Up the Wiki Game 4. Building the Wiki Game Web Crawler 5. Adding a Web UI for the Wiki Game 6. Implementing Recommender Systems with Julia 7. Machine Learning for Recommender Systems 8. Leveraging Unsupervised Learning Techniques 9. Working with Dates, Times, and Time Series 10. Time Series Forecasting 11. Creating Julia Packages 12. Other Books You May Enjoy

Comparing the memory-based versus model-based recommenders


It is important to understand the strengths and weaknesses of both memory-based and model-based recommenders so that we can make the right choice according to the available data and the business requirements. As we saw in the previous chapter, we can classify recommender systems according to the data they are using and the algorithms that are employed.

First, we can talk about non-personalized versus personalized recommenders. Non-personalized recommenders do not take into account user preferences, but that doesn't make them less useful. They are successfully employed when the relevant data is missing, for example, for a user that is new to the system or just not logged in. Such recommendations can include the best apps of the week on the Apple App Store, trending movies on Netflix, songs of the day on Spotify, NY Times bestsellers, Billboard Top 10, and so on.

Moving on to personalized recommender systems, these can be further split...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image