Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Bayesian Models with R

You're reading from   Learning Bayesian Models with R Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher Packt
ISBN-13 9781783987603
Length 168 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Hari Manassery Koduvely Hari Manassery Koduvely
Author Profile Icon Hari Manassery Koduvely
Hari Manassery Koduvely
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introducing the Probability Theory FREE CHAPTER 2. The R Environment 3. Introducing Bayesian Inference 4. Machine Learning Using Bayesian Inference 5. Bayesian Regression Models 6. Bayesian Classification Models 7. Bayesian Models for Unsupervised Learning 8. Bayesian Neural Networks 9. Bayesian Modeling at Big Data Scale Index

Sampling

Often, we would be interested in creating a representative dataset, for some analysis or design of experiments, by sampling from a population. This is particularly the case for Bayesian inference, as we will see in the later chapters, where samples are drawn from posterior distribution for inference. Therefore, it would be useful to learn how to sample N points from some well-known distributions in this chapter.

Before we use any particular sampling methods, readers should note that R, like any other computer program, uses pseudo random number generators for sampling. It is useful to supply a starting seed number to get reproducible results. This can be done using the set.seed(n) command with an integer n as the seed.

Random uniform sampling from an interval

To generate n random numbers (numeric) that are uniformly distributed in the interval [a, b], one can use the runif() function:

>runif(5,1,10)  #generates 5 random numbers between 1 and 10
[1]  7.416    9.846    3.093   2.656...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image