Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R

You're reading from   Mastering Predictive Analytics with R Master the craft of predictive modeling by developing strategy, intuition, and a solid foundation in essential concepts

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783982806
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (13) Chapters Close

Preface 1. Gearing Up for Predictive Modeling 2. Linear Regression FREE CHAPTER 3. Logistic Regression 4. Neural Networks 5. Support Vector Machines 6. Tree-based Methods 7. Ensemble Methods 8. Probabilistic Graphical Models 9. Time Series Analysis 10. Topic Modeling 11. Recommendation Systems Index

Predicting heart disease


We'll put logistic regression for the binary classification task to the test with a real-world data set from the UCI Machine Learning Repository. This time, we will be working with the Statlog (Heart) data set, which we will refer to as the heart data set henceforth for brevity. The data set can be downloaded from the UCI Machine Repository's website at http://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29. The data contain 270 observations for patients with potential heart problems. Of these, 120 patients were shown to have heart problems, so the split between the two classes is fairly even. The task is to predict whether a patient has a heart disease based on their profile and a series of medical tests. First, we'll load the data into a data frame and rename the columns according to the website:

> heart <- read.table("heart.dat", quote = "\"")
> names(heart) <- c("AGE", "SEX", "CHESTPAIN", "RESTBP", "CHOL", "SUGAR", "ECG", "MAXHR", "ANGINA", "DEP...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image