Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
MLOps with Red Hat OpenShift

You're reading from   MLOps with Red Hat OpenShift A cloud-native approach to machine learning operations

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805120230
Length 238 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ross Brigoli Ross Brigoli
Author Profile Icon Ross Brigoli
Ross Brigoli
Faisal Masood Faisal Masood
Author Profile Icon Faisal Masood
Faisal Masood
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Introduction FREE CHAPTER
2. Chapter 1: Introduction to MLOps and OpenShift 3. Part 2: Provisioning and Configuration
4. Chapter 2: Provisioning an MLOps Platform in the Cloud 5. Chapter 3: Building Machine Learning Models with OpenShift 6. Part 3: Operating ML Workloads
7. Chapter 4: Managing a Model Training Workflow 8. Chapter 5: Deploying ML Models as a Service 9. Chapter 6: Operating ML Workloads 10. Chapter 7: Building a Face Detector Using the Red Hat ML Platform 11. Index 12. Other Books You May Enjoy

Versioning your data with Pachyderm

Data is the fundamental component for building your models. Without a retrievable version of the dataset the model was trained on, you cannot replicate the model training activity you did in the past and expect the same results. Data versioning enables dataset comparisons and prevents confusion that may occur due to data changes. This allows us to build a reproducible model training workflow. To learn more about Pachyderm in depth, refer to the Pachyderm documentation at https://docs.pachyderm.com/.

To work with Pachyderm, you can either use the Pachyderm command-line tool, pachctl, or the Pachyderm Python library, which we will use in this book.

Before we start, let’s create a new bucket in your MinIO server. We will use this to store the datasets. Let’s call this bucket raw-data. Then, upload the wine.csv file available in the Git repository of this book into this bucket. For the purpose of this exercise, set the raw-data bucket...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image