Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Time Series Cookbook

You're reading from   Deep Learning for Time Series Cookbook Use PyTorch and Python recipes for forecasting, classification, and anomaly detection

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781805129233
Length 274 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Luís Roque Luís Roque
Author Profile Icon Luís Roque
Luís Roque
Vitor Cerqueira Vitor Cerqueira
Author Profile Icon Vitor Cerqueira
Vitor Cerqueira
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Getting Started with Time Series FREE CHAPTER 2. Chapter 2: Getting Started with PyTorch 3. Chapter 3: Univariate Time Series Forecasting 4. Chapter 4: Forecasting with PyTorch Lightning 5. Chapter 5: Global Forecasting Models 6. Chapter 6: Advanced Deep Learning Architectures for Time Series Forecasting 7. Chapter 7: Probabilistic Time Series Forecasting 8. Chapter 8: Deep Learning for Time Series Classification 9. Chapter 9: Deep Learning for Time Series Anomaly Detection 10. Index 11. Other Books You May Enjoy

Dealing with missing values

In this recipe, we’ll cover how to impute time series missing values. We’ll discuss different methods of imputing missing values and the factors to consider when choosing a method. We’ll show an example of how to solve this problem using pandas.

Getting ready

Missing values are an issue that plagues all kinds of data, including time series. Observations are often unavailable for various reasons, such as sensor failure or annotation errors. In such cases, data imputation can be used to overcome this problem. Data imputation works by assigning a value based on some rule, such as the mean or some predefined value.

How to do it…

We start by simulating missing data. The following code removes 60% of observations from a sample of two years of the solar radiation time series:

import numpy as np
sample_with_nan = series_daily.head(365 * 2).copy()
size_na=int(0.6 * len(sample_with_nan))
idx = np.random.choice(a=range(len(sample_with_nan)),
                       size=size_na,
                       replace=False)
sample_with_nan[idx] = np.nan

We leverage the np.random.choice() method from numpy to select a random sample of the time series. The observations of this sample are changed to a missing value (np.nan).

In datasets without temporal order, it is common to impute missing values using central statistics such as the mean or median. This can be done as follows:

average_value = sample_with_nan.mean()
imp_mean = sample_with_nan.fillna(average_value)

Time series imputation must take into account the temporal nature of observations. This means that the assigned value should follow the dynamics of the series. A more common approach in time series is to impute missing data with the last known observation. This approach is implemented in the ffill() method:

imp_ffill = sample_with_nan.ffill()

Another, less common, approach that uses the order of observations is bfill():

imp_bfill = sample_with_nan.bfill()

The bfill() method imputes missing data with the next available observation in the dataset.

How it works…

The following figure shows the reconstructed time series after imputation with each method:

Figure 1.2: Imputing missing data with different strategies

Figure 1.2: Imputing missing data with different strategies

The mean imputation approach misses the time series dynamics, while both ffill and bfill lead to a reconstructed time series with similar dynamics as the original time series. Usually, ffill is preferable because it does not break the temporal order of observations, that is, using future information to alter (impute) the past.

There’s more…

The imputation process can also be carried out using some conditions, such as limiting the number of imputed observations. You can learn more about this in the documentation pages of these functions, for example, https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ffill.html.

You have been reading a chapter from
Deep Learning for Time Series Cookbook
Published in: Mar 2024
Publisher: Packt
ISBN-13: 9781805129233
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image