Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Labeling in Machine Learning with Python

You're reading from   Data Labeling in Machine Learning with Python Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781804610541
Length 398 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vijaya Kumar Suda Vijaya Kumar Suda
Author Profile Icon Vijaya Kumar Suda
Vijaya Kumar Suda
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Labeling Tabular Data
2. Chapter 1: Exploring Data for Machine Learning FREE CHAPTER 3. Chapter 2: Labeling Data for Classification 4. Chapter 3: Labeling Data for Regression 5. Part 2: Labeling Image Data
6. Chapter 4: Exploring Image Data 7. Chapter 5: Labeling Image Data Using Rules 8. Chapter 6: Labeling Image Data Using Data Augmentation 9. Part 3: Labeling Text, Audio, and Video Data
10. Chapter 7: Labeling Text Data 11. Chapter 8: Exploring Video Data 12. Chapter 9: Labeling Video Data 13. Chapter 10: Exploring Audio Data 14. Chapter 11: Labeling Audio Data 15. Chapter 12: Hands-On Exploring Data Labeling Tools 16. Index 17. Other Books You May Enjoy

Troubleshooting common issues during data analysis

Troubleshooting common issues during audio data analysis involves identifying and addressing problems that may arise at various stages of the analysis pipeline. Here are some common issues and guidance on troubleshooting:

  • Data preprocessing issues:

    Problem: Noisy or inconsistent audio quality.

    Guidance: Check the audio recording conditions and equipment. Consider using noise reduction techniques or applying filters to enhance audio quality. If possible, collect additional high-quality samples.

  • Feature extraction issues:

    Problem: Extracted features do not capture relevant information.

    Guidance: Review the feature extraction methods. Experiment with different feature representations (e.g., spectrograms, MFCCs) and parameters. Ensure that the chosen features are relevant to the analysis task.

  • Model training issues:

    Problem: Poor model performance.

    Guidance: Analyze the training data for class imbalance, bias, or insufficient...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image