Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On C++ Game Animation Programming

You're reading from   Hands-On C++ Game Animation Programming Learn modern animation techniques from theory to implementation with C++ and OpenGL

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781800208087
Length 368 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Chapter 1: Creating a Game Window 2. Chapter 2: Implementing Vectors FREE CHAPTER 3. Chapter 3: Implementing Matrices 4. Chapter 4: Implementing Quaternions 5. Chapter 5: Implementing Transforms 6. Chapter 6: Building an Abstract Renderer 7. Chapter 7: Exploring the glTF File Format 8. Chapter 8: Creating Curves, Frames, and Tracks 9. Chapter 9: Implementing Animation Clips 10. Chapter 10: Mesh Skinning 11. Chapter 11: Optimizing the Animation Pipeline 12. Chapter 12: Blending between Animations 13. Chapter 13: Implementing Inverse Kinematics 14. Chapter 14: Using Dual Quaternions for Skinning 15. Chapter 15: Rendering Instanced Crowds 16. Other Books You May Enjoy

Implementing GPU skinning

You created some basic shaders in Chapter 6, Building an Abstract Renderer and OpenGL—the static.vert shader and the lit.frag shader. The static.vert shader can be used to display a static, unskinned mesh, which is loaded with the LoadMeshes function. The static.vert shader can even display a CPU skinned mesh.

Create a new file, skinned.vert. Follow these steps to implement a vertex shader that can perform matrix palette skinning. The code is very similar to the one used for static.vert; the differences are highlighted:

  1. Each vertex gets two new components—the joint indices that affect the vertex and the weight of each joint. These new components can be stored in ivec4 and vec4:
    #version 330 core
    uniform mat4 model;
    uniform mat4 view;
    uniform mat4 projection;
    in vec3 position;
    in vec3 normal;
    in vec2 texCoord;
    in vec4 weights;
    in ivec4 joints;
  2. Next, add two matrix arrays to the shader—each array is 120 in length. This length...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image