Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Techniques for Text

You're reading from   Machine Learning Techniques for Text Apply modern techniques with Python for text processing, dimensionality reduction, classification, and evaluation

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803242385
Length 448 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nikos Tsourakis Nikos Tsourakis
Author Profile Icon Nikos Tsourakis
Nikos Tsourakis
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Introducing Machine Learning for Text 2. Chapter 2: Detecting Spam Emails FREE CHAPTER 3. Chapter 3: Classifying Topics of Newsgroup Posts 4. Chapter 4: Extracting Sentiments from Product Reviews 5. Chapter 5: Recommending Music Titles 6. Chapter 6: Teaching Machines to Translate 7. Chapter 7: Summarizing Wikipedia Articles 8. Chapter 8: Detecting Hateful and Offensive Language 9. Chapter 9: Generating Text in Chatbots 10. Chapter 10: Clustering Speech-to-Text Transcriptions 11. Index 12. Other Books You May Enjoy

Understanding language modeling

Language models are key ingredients for creating chatbots and many natural language processing applications. In the Modeling the translation problem section of Chapter 6, Teaching Machines to Translate, we stated that a language model expresses our confidence that a sentence is probable in the target language. Probability in this context does not necessarily refer to whether a sentence is grammatically correct but how it resembles how people write. Essentially, a language model learns from text resources, which can contain ungrammatical sentences, misspelled words, slang, biases, and so forth. Therefore, it is a probability distribution over words or word sequences derived from the training corpus.

In simple terms, the objective is to predict the next word, given all previous words within some text. A familiar example is the autocomplete feature in Google’s search bar, which allows you to construct search queries. In this chapter, we will revisit...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image