Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering OpenCV with Practical Computer Vision Projects

You're reading from   Mastering OpenCV with Practical Computer Vision Projects This is the definitive advanced tutorial for OpenCV, designed for those with basic C++ skills. The computer vision projects are divided into easily assimilated chapters with an emphasis on practical involvement for an easier learning curve.

Arrow left icon
Product type Paperback
Published in Dec 2012
Publisher Packt
ISBN-13 9781849517829
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (15) Chapters Close

Mastering OpenCV with Practical Computer Vision Projects
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Cartoonifier and Skin Changer for Android 2. Marker-based Augmented Reality on iPhone or iPad FREE CHAPTER 3. Marker-less Augmented Reality 4. Exploring Structure from Motion Using OpenCV 5. Number Plate Recognition Using SVM and Neural Networks 6. Non-rigid Face Tracking 7. 3D Head Pose Estimation Using AAM and POSIT 8. Face Recognition using Eigenfaces or Fisherfaces Index

Structure from Motion concepts


The first discrimination we should make is the difference between stereo (or indeed any multiview), 3D reconstruction using calibrated rigs, and SfM. While a rig of two or more cameras assume we already know what the motion between the cameras is, in SfM we don't actually know this motion and we wish to find it. Calibrated rigs, from a simplistic point of view, allow a much more accurate reconstruction of 3D geometry because there is no error in estimating the distance and rotation between the cameras—it is already known. The first step in implementing an SfM system is finding the motion between the cameras. OpenCV may help us in a number of ways to obtain this motion, specifically using the findFundamentalMat function.

Let us think for one moment of the goal behind choosing an SfM algorithm. In most cases we wish to obtain the geometry of the scene, for example, where objects are in relation to the camera and what their form is. Assuming we already know the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image