Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Ensemble Machine Learning Cookbook

You're reading from   Ensemble Machine Learning Cookbook Over 35 practical recipes to explore ensemble machine learning techniques using Python

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789136609
Length 336 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vijayalakshmi Natarajan Vijayalakshmi Natarajan
Author Profile Icon Vijayalakshmi Natarajan
Vijayalakshmi Natarajan
Dipayan Sarkar Dipayan Sarkar
Author Profile Icon Dipayan Sarkar
Dipayan Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Get Closer to Your Data FREE CHAPTER 2. Getting Started with Ensemble Machine Learning 3. Resampling Methods 4. Statistical and Machine Learning Algorithms 5. Bag the Models with Bagging 6. When in Doubt, Use Random Forests 7. Boosting Model Performance with Boosting 8. Blend It with Stacking 9. Homogeneous Ensembles Using Keras 10. Heterogeneous Ensemble Classifiers Using H2O 11. Heterogeneous Ensemble for Text Classification Using NLP 12. Homogenous Ensemble for Multiclass Classification Using Keras 13. Other Books You May Enjoy

Bootstrap aggregation

Bootstrap aggregation, also known as bagging, is a powerful ensemble method that was proposed by Leo Breiman in 1994 to prevent overfitting. The concept behind bagging is to combine the predictions of several base learners to create a more accurate output.

Breiman showed that bagging can successfully achieve the desired result in unstable learning algorithms where small changes to the training data can lead to large variations in the predictions. Breiman demonstrated that algorithms such as neural networks and decision trees are examples of unstable learning algorithms. Bootstrap aggregation is effective on small datasets.

The general procedure for bagging helps to reduce variance for those algorithms have high variance. Bagging also supports the classification and regression problem. The following diagram shows how the bootstrap aggregation flow works...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image