In the previous sections, we have learned how to use auxiliary information such as the labels of data to improve the image quality generated by GANs. However, it is not always possible to prepare accurate labels of training samples beforehand. Sometimes, it is even difficult for us to accurately describe the labels of extremely complex data. In this section, we will introduce another excellent model from the GAN family, InfoGAN, which is capable of extracting data attributes during training in an unsupervised manner. InfoGAN was proposed by Xi Chen, Yan Duan, Rein Houthooft, et. al. in their paper, InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. It showed that GANs could not only learn to generate realistic samples but also learn semantic features, which are essential to sample...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia