Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Data Mining with Python

You're reading from   Learning Data Mining with Python Harness the power of Python to analyze data and create insightful predictive models

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher Packt
ISBN-13 9781784396053
Length 344 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Robert Layton Robert Layton
Author Profile Icon Robert Layton
Robert Layton
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started with Data Mining FREE CHAPTER 2. Classifying with scikit-learn Estimators 3. Predicting Sports Winners with Decision Trees 4. Recommending Movies Using Affinity Analysis 5. Extracting Features with Transformers 6. Social Media Insight Using Naive Bayes 7. Discovering Accounts to Follow Using Graph Mining 8. Beating CAPTCHAs with Neural Networks 9. Authorship Attribution 10. Clustering News Articles 11. Classifying Objects in Images Using Deep Learning 12. Working with Big Data A. Next Steps… Index

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

The most important is code. Code that you need to enter is displayed separate from the text, in a box like this one:

if True:
    print("Welcome to the book")

Keep a careful eye on indentation. Python cares about how much lines are indented. In this book, I've used four spaces for indentation. You can use a different number (or tabs), but you need to be consistent. If you get a bit lost counting indentation levels, reference the code bundle that comes with the book.

Where I refer to code in text, I'll use this format. You don't need to type this in your IPython Notebooks, unless the text specifically states otherwise.

Any command-line input or output is written as follows:

# cp file1.txt file2.txt

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Click on the Export link."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image