In this chapter, we looked at how models are deployed through SageMaker and covered how the endpoints are defined and invoked. Through the use of Spark's model serialization and deserialization, we illustrated how models can be shipped to other environments, such as a custom web service implementation in Flask. Finally, we outlined how your Spark model (or any other arbitrary model) can be served through SageMaker by registering a custom Docker image in AWS ECR.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand