Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical WebAssembly

You're reading from   Practical WebAssembly Explore the fundamentals of WebAssembly programming using Rust

Arrow left icon
Product type Paperback
Published in May 2022
Publisher Packt
ISBN-13 9781838828004
Length 232 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sendil Kumar Nellaiyapen Sendil Kumar Nellaiyapen
Author Profile Icon Sendil Kumar Nellaiyapen
Sendil Kumar Nellaiyapen
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to WebAssembly
2. Chapter 1: Understanding LLVM FREE CHAPTER 3. Chapter 2: Understanding Emscripten 4. Chapter 3: Exploring WebAssembly Modules 5. Section 2: WebAssembly Tools
6. Chapter 4: Understanding WebAssembly Binary Toolkit 7. Chapter 5: Understanding Sections in WebAssembly Modules 8. Chapter 6: Installing and Using Binaryen 9. Section 3: Rust and WebAssembly
10. Chapter 7: Integrating Rust with WebAssembly 11. Chapter 8: Bundling WebAssembly Using wasm-pack 12. Chapter 9: Crossing the Boundary between Rust and WebAssembly 13. Chapter 10: Optimizing Rust and WebAssembly 14. Other Books You May Enjoy

Understanding various levels of optimizations

C/C++ programs are compiled and converted into native code via Clang or the GCC compiler. Clang or the GCC compiler converts the C/C++ program based on the target. Target here refers to the end machine where the code is executed. emcc has the Clang compiler built in. The emcc compiler is responsible for converting the C or C++ source code into LLVM byte code.

In this section, we will see how to improve the optimization and code size of the generated WebAssembly binary code.

To improve the efficiency and generated code size, the Emscripten compiler has the following options:

  • Optimizations
  • Closure Compiler

Lets talk about optimizations first.

Optimizations

The goal of the compiler is to reduce the cost of compilation, that is, the compile time. With the -O optimization flag, the compiler tries to improve the code size and/or the performance at the expense of the compile time. In terms of compiler optimizations...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image