Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Quantum Computing Experimentation with Amazon Braket

You're reading from   Quantum Computing Experimentation with Amazon Braket Explore Amazon Braket quantum computing to solve combinatorial optimization problems

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781800565265
Length 420 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Alex Khan Alex Khan
Author Profile Icon Alex Khan
Alex Khan
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Introduction
2. Section 1: Getting Started with Amazon Braket FREE CHAPTER
3. Chapter 1: Setting Up Amazon Braket 4. Chapter 2: Braket Devices Explained 5. Chapter 3: User Setup, Tasks, and Understanding Device Costs 6. Chapter 4: Writing Your First Amazon Braket Code Sample 7. Section 2: Building Blocks for Real-World Use Cases
8. Chapter 5: Using a Quantum Annealer – Developing a QUBO Function and Applying Constraints 9. Chapter 6: Using Gate-Based Quantum Computers – Qubits and Quantum Circuits 10. Chapter 7: Using Gate Quantum Computers – Basic Quantum Algorithms 11. Chapter 8: Using Hybrid Algorithms – Optimization Using Gate-Based Quantum Computers 12. Chapter 9: Running QAOA on Simulators and Amazon Braket Devices 13. Section 3: Real-World Use Cases
14. Chapter 10: Amazon Braket Hybrid Jobs, PennyLane, and other Braket Features 15. Chapter 11: Single-Objective Optimization Use Case 16. Chapter 12: Multi-Objective Optimization Use Case 17. Other Books You May Enjoy Appendix: Knapsack BQM Derivation

Summary

In this chapter, we focused on implementing the Quantum Approximate Optimization Algorithm (QAOA), a hybrid algorithm. We started by using the phase adder circuit from Chapter 7, Using Gate Quantum Computers – Basic Quantum Algorithms, which has been modified for addition and subtraction. We used this to create a circuit that can sample all the possible solutions of an objective function. We found that this method provides equal probabilities of the different solutions and required a substantially large number of qubits and gate depth. To find the minimum value more efficiently, for optimization applications, it is necessary to be able to efficiently sample the lowest cost. We went over the concepts of how QAOA works and how its parameters impact the performance of the algorithm. We discussed that, in practice, the algorithm uses a classical optimization application to find the optimal parameters, and that this process is repeated in a few cycles to find the optimal...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image