Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Engineering MLOps

You're reading from   Engineering MLOps Rapidly build, test, and manage production-ready machine learning life cycles at scale

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781800562882
Length 370 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Emmanuel Raj Emmanuel Raj
Author Profile Icon Emmanuel Raj
Emmanuel Raj
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Framework for Building Machine Learning Models
2. Chapter 1: Fundamentals of an MLOps Workflow FREE CHAPTER 3. Chapter 2: Characterizing Your Machine Learning Problem 4. Chapter 3: Code Meets Data 5. Chapter 4: Machine Learning Pipelines 6. Chapter 5: Model Evaluation and Packaging 7. Section 2: Deploying Machine Learning Models at Scale
8. Chapter 6: Key Principles for Deploying Your ML System 9. Chapter 7: Building Robust CI/CD Pipelines 10. Chapter 8: APIs and Microservice Management 11. Chapter 9: Testing and Securing Your ML Solution 12. Chapter 10: Essentials of Production Release 13. Section 3: Monitoring Machine Learning Models in Production
14. Chapter 11: Key Principles for Monitoring Your ML System 15. Chapter 12: Model Serving and Monitoring 16. Chapter 13: Governing the ML System for Continual Learning 17. Other Books You May Enjoy

Toward the ML Pipeline

So far, we have processed the data by working on irregularities such as missing data, selected features by observing correlations, created new features, and finally ingested and versioned the processed data to the Machine learning workspace. There are two ways to fuel the data ingestion for ML model training in the ML pipeline. One way is from the central storage (where all your raw data is stored) and the second way is using a feature store. As knowledge is power, Let's get to know the use of the feature store before we move to the ML pipeline.

Feature Store

A feature store compliments the central storage by storing important features and make them available for training or inference. A feature store is a store where you transform raw data into useful features that ML models can use directly to train and infer to make predictions. Raw Data typically comes from various data sources, which are structured, unstructured, streaming, batch, and real-time...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image