Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Artificial Intelligence with Java for Beginners

You're reading from   Hands-On Artificial Intelligence with Java for Beginners Build intelligent apps using machine learning and deep learning with Deeplearning4j

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789537550
Length 144 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nisheeth Joshi Nisheeth Joshi
Author Profile Icon Nisheeth Joshi
Nisheeth Joshi
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Introduction to Artificial Intelligence and Java FREE CHAPTER 2. Exploring Search Algorithms 3. AI Games and the Rule-Based System 4. Interfacing with Weka 5. Handling Attributes 6. Supervised Learning 7. Semi-Supervised and Unsupervised Learning 8. Other Books You May Enjoy

Model evaluation


We will now look at how to evaluate the classifier that we have trained. Let's start with the code.

We'll start by importing the following classes:

import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;
import weka.classifiers.trees.J48;
import weka.classifiers.Evaluation;
import java.util.Random;

This time, we'll use the Evaluation class from the weka.classifiers package, and a Random class for some random value generation.

 

The DataSource that we'll be using is the segment-challenge.arff file. We are using this because it has a test dataset, and it is also one of the datasets that comes with Weka. We'll assign it to our Instances object, and we will then tell Weka which attribute is the class attribute. We'll set the flags for our decision tree classifier and create an object for our decision tree classifier. Then, we'll set the options, and we'll build the classifier. We performed the same in the previous section:

public static void main(String...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image