Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Mastering Numerical Computing with NumPy
Mastering Numerical Computing with NumPy

Mastering Numerical Computing with NumPy: Master scientific computing and perform complex operations with ease

Arrow left icon
Profile Icon Mert Cakmak Profile Icon Tiago Antao Profile Icon Cuhadaroglu
Arrow right icon
₹800 per month
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (1 Ratings)
Paperback Jun 2018 248 pages 1st Edition
eBook
₹799 ₹2323.99
Paperback
₹2904.99
Subscription
Free Trial
Renews at ₹800p/m
Arrow left icon
Profile Icon Mert Cakmak Profile Icon Tiago Antao Profile Icon Cuhadaroglu
Arrow right icon
₹800 per month
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (1 Ratings)
Paperback Jun 2018 248 pages 1st Edition
eBook
₹799 ₹2323.99
Paperback
₹2904.99
Subscription
Free Trial
Renews at ₹800p/m
eBook
₹799 ₹2323.99
Paperback
₹2904.99
Subscription
Free Trial
Renews at ₹800p/m

What do you get with a Packt Subscription?

Free for first 7 days. ₹800 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Mastering Numerical Computing with NumPy

Linear Algebra with NumPy

One of the major divisions of mathematics is algebra, and linear algebra in particular, focuses on linear equations and mapping linear spaces, namely vector spaces. When we create a linear map between vector spaces, we are actually creating a data structure called a matrix. The main usage of linear algebra is to solve simultaneous linear equations, but it can also be used for approximations for non-linear systems. Imagine a complex model or system that you are trying to understand, think of it as a non-linear model. In such cases, you can reduce the complex, non-linear characteristics of the problem into simultaneous linear equations, and you can solve them with the help of linear algebra.

In computer science, linear algebra is heavily used in machine learning (ML) applications. In ML applications, you deal with high-dimensional arrays, which can easily...

Vector and matrix mathematics

In the previous chapter, you practiced introductory operations with vectors and matrices. In this section, you will practice more advanced vector and matrix operations that are heavily used in linear algebra. Let's remember the dot product perspective on matrix manipulation and how it can be done with different methods when you have 2-D arrays. The following code block shows alternative ways of performing dot product calculation:

In [1]: import numpy as np 
a = np.arange(12).reshape(3,2)
b = np.arange(15).reshape(2,5)
print(a)
print(b)
Out[1]:
[[ 0 1]
[ 2 3]
[ 4 5]]
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
In [2]: np.dot(a,b)
Out[2]: array([[ 5, 6, 7, 8, 9],
[15, 20, 25, 30, 35],
[25, 34, 43, 52, 61]])
In [3]: np.matmul(a,b)
Out[3]: array([[ 5, 6, 7, 8, 9],
[15, 20, 25, 30...

What's an eigenvalue and how do we compute it?

An eigenvalue is a coefficient of an eigenvector. By definition, an eigenvector is a non zero vector that only changes by a scalar factor when linear transformation is applied. In general, when linear transformation is applied to a vector, its span (the line passing through its origin) is shifted, but some special vectors are not affected by these linear transformations and remain on their own span. These are what we call eigenvectors. The linear transformation affects them only by stretching or squishing them as you are multiplying this vector with a scalar. The value of this scalar is called the eigenvalue. Let's say we have a matrix A, which will be used in linear transformation. We can represent the eigenvalue and eigenvector in a mathematical statements as follows:

Here, is the eigenvector and denotes the eigenvalue...

Computing the norm and determinant

This subsection will introduce two important values in linear algebra, namely the norm and determinant. Briefly, the norm gives length of a vector. The most commonly used norm is the L2-norm, which is also known as the Euclidean norm. Formally, the Lp-norm of x is calculated as follows:

The L0-norm is actually the cardinality of a vector. You can calculate it by just counting the total number of non-zero elements. For example, the vector A =[2,5,9,0] contains three non-zero elements, therefore ||A||0 = 3. The following code block shows the same norm calculation with numpy:

In [24]: import numpy as np 
x = np.array([2,5,9,0])
np.linalg.norm(x,ord=0)
Out[24]: 3.0

In NumPy, you can calculate the norm of the vector with the use of the linalg.norm() method. The first parameter is the input array and the ord parameter is for order...

Solving linear equations

In this section, you will learn how to solve linear equations by using the linalg.solve() method. When you have a linear equation to solve, as in the form , in simple cases you can just calculate the inverse of A and then multiply it by B to get the solution, but when A has a high dimensionality, that makes it very hard computationally to calculate the inverse of A. Let's start with an example of three linear equations with three unknowns, as follows:

So, these equations can be formalized as follows with matrices:

Then, our problem is to solve . We can calculate the solution with a plain vanilla NumPy without using linalg.solve(). After inverting the A matrix, you will multiply with B in order to get results for x. In the following code block, we calculate the dot product for the inverse matrix of A and B in order to calculate :

In [44]: A =...

Computing gradient

When you have a linear line, you take the derivative so the derivative shows the slope of this line. Gradient is a generalization of the derivative when you have a multiple variable in your function, therefore the result of gradient is actually a vector function rather than a scalar value in derivative. The main goal of ML is actually finding the best model that fits your data. You can evaluate the meaning of the best as minimizing your loss function or objective function. Gradient is used for finding the value of the coefficients or a function that will minimize your loss or cost function. A well-known way of finding optimum points is taking the derivative of the objective function then setting it to zero to find your model coefficients. If you have more than one coefficient then it becomes a gradient rather than a derivative, and it becomes a vector equation...

Summary

In this chapter, we covered vector and matrix operations for linear algebra. We looked at advanced matrix operations, especially featuring dot operations. You also learned about eigenvalues and eigenvectors and then practiced their use in principal component analysis (PCA). Moreover, we covered the norm and determinant calculation and mentioned their importance and usage in ML. In the last two subsections, you learned how to convert linear equations into matrices and solve them, and looked at the computation and importance of gradients.

In the next chapter, we will use NumPy statistics to do explanatory data analysis to explore the 2015 United States Housing data.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • • Grasp all aspects of numerical computing and understand NumPy
  • • Explore examples to learn exploratory data analysis (EDA), regression, and clustering
  • • Access NumPy libraries and use performance benchmarking to select the right tool

Description

NumPy is one of the most important scientific computing libraries available for Python. Mastering Numerical Computing with NumPy teaches you how to achieve expert level competency to perform complex operations, with in-depth coverage of advanced concepts. Beginning with NumPy's arrays and functions, you will familiarize yourself with linear algebra concepts to perform vector and matrix math operations. You will thoroughly understand and practice data processing, exploratory data analysis (EDA), and predictive modeling. You will then move on to working on practical examples which will teach you how to use NumPy statistics in order to explore US housing data and develop a predictive model using simple and multiple linear regression techniques. Once you have got to grips with the basics, you will explore unsupervised learning and clustering algorithms, followed by understanding how to write better NumPy code while keeping advanced considerations in mind. The book also demonstrates the use of different high-performance numerical computing libraries and their relationship with NumPy. You will study how to benchmark the performance of different configurations and choose the best for your system. By the end of this book, you will have become an expert in handling and performing complex data manipulations.

Who is this book for?

Mastering Numerical Computing with NumPy is for you if you are a Python programmer, data analyst, data engineer, or a data science enthusiast, who wants to master the intricacies of NumPy and build solutions for your numeric and scientific computational problems. You are expected to have familiarity with mathematics to get the most out of this book.

What you will learn

  • • Perform vector and matrix operations using NumPy
  • • Perform exploratory data analysis (EDA) on US housing data
  • • Develop a predictive model using simple and multiple linear regression
  • • Understand unsupervised learning and clustering algorithms with practical use cases
  • • Write better NumPy code and implement the algorithms from scratch
  • • Perform benchmark tests to choose the best configuration for your system

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 28, 2018
Length: 248 pages
Edition : 1st
Language : English
ISBN-13 : 9781788993357
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. ₹800 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jun 28, 2018
Length: 248 pages
Edition : 1st
Language : English
ISBN-13 : 9781788993357
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
₹800 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
₹4500 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₹400 each
Feature tick icon Exclusive print discounts
₹5000 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₹400 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 8,267.97
SciPy Recipes
₹2904.99
Hands-On Data Analysis with NumPy and pandas
₹2457.99
Mastering Numerical Computing with NumPy
₹2904.99
Total 8,267.97 Stars icon
Banner background image

Table of Contents

10 Chapters
Working with NumPy Arrays Chevron down icon Chevron up icon
Linear Algebra with NumPy Chevron down icon Chevron up icon
Exploratory Data Analysis of Boston Housing Data with NumPy Statistics Chevron down icon Chevron up icon
Predicting Housing Prices Using Linear Regression Chevron down icon Chevron up icon
Clustering Clients of a Wholesale Distributor Using NumPy Chevron down icon Chevron up icon
NumPy, SciPy, Pandas, and Scikit-Learn Chevron down icon Chevron up icon
Advanced Numpy Chevron down icon Chevron up icon
Overview of High-Performance Numerical Computing Libraries Chevron down icon Chevron up icon
Performance Benchmarks Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(1 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Andrey Jun 27, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good
Subscriber review Packt
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.