Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Deep Learning at Scale with MLflow

You're reading from   Practical Deep Learning at Scale with MLflow Bridge the gap between offline experimentation and online production

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781803241333
Length 288 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Yong Liu Yong Liu
Author Profile Icon Yong Liu
Yong Liu
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1 - Deep Learning Challenges and MLflow Prime
2. Chapter 1: Deep Learning Life Cycle and MLOps Challenges FREE CHAPTER 3. Chapter 2: Getting Started with MLflow for Deep Learning 4. Section 2 –
Tracking a Deep Learning Pipeline at Scale
5. Chapter 3: Tracking Models, Parameters, and Metrics 6. Chapter 4: Tracking Code and Data Versioning 7. Section 3 –
Running Deep Learning Pipelines at Scale
8. Chapter 5: Running DL Pipelines in Different Environments 9. Chapter 6: Running Hyperparameter Tuning at Scale 10. Section 4 –
Deploying a Deep Learning Pipeline at Scale
11. Chapter 7: Multi-Step Deep Learning Inference Pipeline 12. Chapter 8: Deploying a DL Inference Pipeline at Scale 13. Section 5 – Deep Learning Model Explainability at Scale
14. Chapter 9: Fundamentals of Deep Learning Explainability 15. Chapter 10: Implementing DL Explainability with MLflow 16. Other Books You May Enjoy

Section 4 –
Deploying a Deep Learning Pipeline at Scale

In this section, we will learn how to implement and deploy a multi-step inference pipeline for production usage. We will start with an overview of four patterns of inference workflows in production. We will then learn how to implement a multi-step inference pipeline with preprocessing and postprocessing steps around a fine-tuned deep learning (DL) model using MLflow PyFunc APIs. With a ready-to-deploy MLflow PyFunc-compatible DL inference pipeline, we will learn about different deployment tools and hosting environments to decide which tool to use for a specific deployment scenario. We will then implement and deploy a batch inference pipeline using MLflow's Spark user-defined function (UDF). From there on, we will focus on deploying a web service using either MLflow's built-in model serving tool or Ray Serve's MLflow deployment plugin. Finally, we will show a complete step-by-step guide to deploying...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image