Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning By Example

You're reading from   Python Machine Learning By Example Unlock machine learning best practices with real-world use cases

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835085622
Length 518 pages
Edition 4th Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Getting Started with Machine Learning and Python FREE CHAPTER 2. Building a Movie Recommendation Engine with Naïve Bayes 3. Predicting Online Ad Click-Through with Tree-Based Algorithms 4. Predicting Online Ad Click-Through with Logistic Regression 5. Predicting Stock Prices with Regression Algorithms 6. Predicting Stock Prices with Artificial Neural Networks 7. Mining the 20 Newsgroups Dataset with Text Analysis Techniques 8. Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling 9. Recognizing Faces with Support Vector Machine 10. Machine Learning Best Practices 11. Categorizing Images of Clothing with Convolutional Neural Networks 12. Making Predictions with Sequences Using Recurrent Neural Networks 13. Advancing Language Understanding and Generation with the Transformer Models 14. Building an Image Search Engine Using CLIP: a Multimodal Approach 15. Making Decisions in Complex Environments with Reinforcement Learning 16. Other Books You May Enjoy
17. Index

To get the most out of this book

A basic foundation of Python knowledge, basic machine learning algorithms, and some basic Python libraries, such as NumPy and pandas, is assumed in order to create smart cognitive actions for your projects.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/packtjaniceg/Python-Machine-Learning-by-Example-Fourth-Edition/. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781835085622.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter (X) handles. Here is an example: “Besides the rating matrix data, we also record the movie ID to column index mapping.”

A block of REPL code is set as follows:

>>> smoothing = 1
>>> likelihood = get_likelihood(X_train, label_indices, smoothing)
>>> print('Likelihood:\n', likelihood)

Any output from the code will appear like this:

Likelihood:
 {'Y': array([0.4, 0.6, 0.4]), 'N': array([0.33333333, 0.33333333, 0.66666667])}

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: “There are three types of classification based on the possibility of class output—binary, multiclass, and multi-label classification.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image