Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Projects

You're reading from   R Deep Learning Projects Master the techniques to design and develop neural network models in R

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788478403
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Pablo Maldonado Pablo Maldonado
Author Profile Icon Pablo Maldonado
Pablo Maldonado
Arrow right icon
View More author details
Toc

What this book covers

Chapter 1, Handwritten Digit Recognition Using Convolutional Neural Networks, is where we start working on the first project of the book. We will begin with a recap of logistic regression and multilayer perceptron. We'll solve the problem with these two algorithms. We will then move on to the biologically inspired variants of multilayer perceptron—convolutional neural networks (CNNs). We will also cover the basics and core concepts of deep learning.

Chapter 2, Traffic Sign Recognition for Intelligent Vehicles, explains how to use CNNs for another application—traffic sign detection. We will also cover several important concepts of deep learning in this chapter and get readers familiar with other popular frameworks and libraries, such as Keras and TensorFlow. We will also introduce the dropout technique as a regularization approach and utilize data augmentation techniques to deal with a lack of training data.

Chapter 3, Fraud Detection with Autoencoders, introduces a type of deep learning model that can be used for anomaly detection. Outliers can be found within a collection of images, a text corpus, or transactional data. We will dive into applications of autoencoders and how they can be used for outlier detection in this domain. 

Chapter 4, Text Generation Using Recurrent Neural Networks, introduces different models of neural networks that try to capture the elusive properties of memory and abstraction to produce powerful models. We will apply different methods to tackle the text generation problem and suggest directions of further exploration. 

Chapter 5, Sentiment Analysis with Word Embeddings, shows how to use the popular GloVe algorithm for sentiment analysis, as well as other, less abstract tools. Although this algorithm is, strictly speaking, not a deep learning application, it belongs to the modern (as of 2018) toolkit of the data scientist, and it can be combined with other deep learning techniques.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image