Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Cybersecurity Cookbook

You're reading from   Machine Learning for Cybersecurity Cookbook Over 80 recipes on how to implement machine learning algorithms for building security systems using Python

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781789614671
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Emmanuel Tsukerman Emmanuel Tsukerman
Author Profile Icon Emmanuel Tsukerman
Emmanuel Tsukerman
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Machine Learning for Cybersecurity FREE CHAPTER 2. Machine Learning-Based Malware Detection 3. Advanced Malware Detection 4. Machine Learning for Social Engineering 5. Penetration Testing Using Machine Learning 6. Automatic Intrusion Detection 7. Securing and Attacking Data with Machine Learning 8. Secure and Private AI 9. Other Books You May Enjoy Appendix

Differential privacy using TensorFlow Privacy

TensorFlow Privacy (https://github.com/tensorflow/privacy) is a relatively new addition to the TensorFlow family. This Python library includes implementations of TensorFlow optimizers for training machine learning models with differential privacy. A model that has been trained to be differentially private does not non-trivially change as a result of the removal of any single training instance from its dataset. (Approximate) differential privacy is quantified using epsilon and delta, which give a measure of how sensitive the model is to a change in a single training example. Using the Privacy library is as simple as wrapping the familiar optimizers (for example, RMSprop, Adam, and SGD) to convert them to a differentially private version. This library also provides convenient tools for measuring the privacy guarantees, epsilon,...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image