Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Real-Time Big Data Analytics

You're reading from   Real-Time Big Data Analytics Design, process, and analyze large sets of complex data in real time

Arrow left icon
Product type Paperback
Published in Feb 2016
Publisher
ISBN-13 9781784391409
Length 326 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Shilpi Saxena Shilpi Saxena
Author Profile Icon Shilpi Saxena
Shilpi Saxena
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introducing the Big Data Technology Landscape and Analytics Platform 2. Getting Acquainted with Storm FREE CHAPTER 3. Processing Data with Storm 4. Introduction to Trident and Optimizing Storm Performance 5. Getting Acquainted with Kinesis 6. Getting Acquainted with Spark 7. Programming with RDDs 8. SQL Query Engine for Spark – Spark SQL 9. Analysis of Streaming Data Using Spark Streaming 10. Introducing Lambda Architecture Index

The Big Data dimensional paradigm

To begin with, in simple terms, Big Data helps us deal with the three Vs: volume, velocity, and variety. Recently, two more Vs—veracity and value—were added to it, making it a five-dimensional paradigm:

  • Volume: This dimension refers to the amount of data. Look around you; huge amounts of data are being generated every second—it may be the e-mail you send, Twitter, Facebook, other social media, or it can just be all the videos, pictures, SMS, call records, or data from various devices and sensors. We have scaled up the data measuring metrics to terabytes, zettabytes and vronobytes—they are all humongous figures. Look at Facebook, it has around 10 billion messages each day; consolidated across all users, we have nearly 5 billion "likes" a day; and around 400 million photographs are uploaded each day. Data statistics, in terms of volume, are startling; all the data generated from the beginning of time to 2008 is kind of equivalent to what we generate in a day today, and I am sure soon it will be an hour. This volume aspect alone is making the traditional database unable to store and process this amount of data in a reasonable and useful time frame, though a Big Data stack can be employed to store, process, and compute amazingly large datasets in a cost-effective, distributed, and reliably efficient manner.
  • Velocity: This refers to the data generation speed, or the rate at which data is being generated. In today's world, where the volume of data has made a tremendous surge, this aspect is not lagging behind. We have loads of data because we are generating it so fast. Look at social media; things are circulated in seconds and they become viral, and the insight from social media is analyzed in milliseconds by stock traders and that can trigger lot of activity in terms of buying or selling. At target point of sale counters, it takes a few seconds for a credit card swipe and, within that, fraudulent transaction processing, payment, bookkeeping, and acknowledgement are all done. Big Data gives me power to analyze the data at tremendous speed.
  • Variety: This dimension tackles the fact that the data can be unstructured. In the traditional database world, and even before that, we were used to a very structured form of data that kind of neatly fitted into the tables. But today, more than 80 percent of data is unstructured; for example, photos, video clips, social media updates, data from a variety of sensors, voice recordings, and chat conversations. Big Data lets you store and process this unstructured data in a very structured manner; in fact, it embraces the variety.
  • Veracity: This is all about validity and the correctness of data. How accurate and usable is the data? Not everything out of millions and zillions of data records is corrected, accurate, and referable. That's what veracity actually is: how trustworthy the data is, and what the quality of data is. Two examples of data with veracity are Facebook and Twitter posts with nonstandard acronyms or typos. Big Data has brought to the table the ability to run analytics on this kind of data. One of the strong reasons for the volume of data is its veracity.
  • Value: As the name suggests, this is the value the data actually holds. Unarguably, it's the most important V or dimension of Big Data. The only motivation for going towards Big Data for the processing of super-large datasets is to derive some valuable insight from it; in the end, it's all about cost and benefits.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image