Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Software Architecture with C++

You're reading from   Software Architecture with C++ Design modern systems using effective architecture concepts, design patterns, and techniques with C++20

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781838554590
Length 540 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Adrian Ostrowski Adrian Ostrowski
Author Profile Icon Adrian Ostrowski
Adrian Ostrowski
Piotr Gaczkowski Piotr Gaczkowski
Author Profile Icon Piotr Gaczkowski
Piotr Gaczkowski
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Concepts and Components of Software Architecture
2. Importance of Software Architecture and Principles of Great Design FREE CHAPTER 3. Architectural Styles 4. Functional and Nonfunctional Requirements 5. Section 2: The Design and Development of C++ Software
6. Architectural and System Design 7. Leveraging C++ Language Features 8. Design Patterns and C++ 9. Building and Packaging 10. Section 3: Architectural Quality Attributes
11. Writing Testable Code 12. Continuous Integration and Continuous Deployment 13. Security in Code and Deployment 14. Performance 15. Section 4: Cloud-Native Design Principles
16. Service-Oriented Architecture 17. Designing Microservices 18. Containers 19. Cloud-Native Design 20. Assessments 21. About Packt 22. Other Books You May Enjoy Appendix A

Coupling

Coupling is a measure of how strongly one software unit depends on other units. A unit with high coupling relies on many other units. The lower the coupling, the better.

For example, if a class depends on private members of another class, it means they're tightly coupled. A change in the second class would probably mean that the first one needs to be changed as well, which is why it's not a desirable situation.

To weaken the coupling in the preceding scenario, we could think about adding parameters for the member functions instead of directly accessing other classes' private members.

Another example of tightly coupled classes is the first implementation of the Project and developer classes in the dependency inversion section. Let's see what would happen if we were to add yet another developer type:

class MiddlewareDeveloper {
public:
void developMiddleware() {}
};

class Project {
public:
void deliver() {
fed_.developFrontEnd();
med_.developMiddleware();
bed_.developBackEnd();
}

private:
FrontEndDeveloper fed_;
MiddlewareDeveloper med_;
BackEndDeveloper bed_;
};

It looks like instead of just adding the MiddlewareDeveloper class, we had to modify the public interface of the Project class. This means they're tightly coupled and that this implementation of the Project class actually breaks the OCP. For comparison, let's now see how the same modification would be applied to the implementation using dependency inversion:

class MiddlewareDeveloper {
public:
void develop() { developMiddleware(); }

private:
void developMiddleware();
};

No changes to the Project class were required, so now the classes are loosely coupled. All we needed to do was to add the MiddlewareDeveloper class. Structuring our code this way allows for smaller rebuilds, faster development, and easier testing, all with less code that's easier to maintain. To use our new class, we only need to modify the calling code:

using MyProject = Project<FrontEndDeveloper, MiddlewareDeveloper, BackEndDeveloper>;
auto alice = FrontEndDeveloper{};
auto bob = BackEndDeveloper{};
auto charlie = MiddlewareDeveloper{};
auto new_project = MyProject{{alice, charlie, bob}};
new_project.deliver();

This shows coupling on a class level. On a larger scale, for instance, between two services, the low coupling can be achieved by introducing techniques such as message queueing. The services wouldn't then depend on each other directly, but just on the message format. If you're having a microservice architecture, a common mistake is to have multiple services use the same database. This causes coupling between those services as you cannot freely modify the database schema without affecting all the microservices that use it.

Let's now move on to cohesion.

You have been reading a chapter from
Software Architecture with C++
Published in: Apr 2021
Publisher: Packt
ISBN-13: 9781838554590
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image